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1. Introduction 

Dynamical triangulations, [ADF,D2,Ka,We], have recently attracted much interest as a 
computationally manageable method for the investigation of discrete models of quantum 
gravity. This approach deals with a variant of Regge calculus [R,Wi] where, in alternative to 
the standard usage, the edge lengths of the triangulated manifolds are kept fixed and set equal 
to some minimal short-distance cut-off, whereas the underlying combinatorial structure 
of the triangulations takes the role of a statistical variable, varying in some ensemble of 
manifolds contributing to the model. A dynamical content is thus given to the connectivity 
of the triangulation in such a way that each choice of a triangulation corresponds to a choice 
of metric by Regge calculus. 

This particular prominence given to the enumeration of triangulations gives to dynami- 
cally triangulated gravity the seemingly simple flavor of a combinatorial theory. However, 
it must be stressed that this simplicity is largely apparent rather than actual, since at a clas- 
sical level and at a variance with standard Regge calculus, dynamical triangulations do not 
afford a simple procedure for recovering the Einstein-Hilbert action out of its combinatorial 
counterpart, diffeomorphism invariance being now completely lost. 

The possible advantages in the use of dynamical triangulations are rather related to 
the different way in which one realizes, in this approach, the sampling of inequivalent 
riemannian structures. This is obtained by choosing a representative metric (by fixing the 
edge lengths) and by ergodically varying the combinatorial structure of the triangulation. We 
do not know of a proof which explicitly shows a correspondence between this procedure and 
a suitable continuous way of parametrizing the set of inequivalent riemannian structures. 
Perhaps the Gromov-Hausdorff topology discussed below provides such a correspondence. 
In any case, it is more or less tacitly assumed that in this way one sweeps a much larger 
set of riemannian structures as compared to the Regge case, where the formalism, in this 
respect, is less flexible owing to the constraints expressed by the triangular inequalities. 
These constraints tend to localize the edge length varying triangulations used in Regge 
calculus in a neighborhood of the riemannian structure corresponding to the triangulation 
originally given. Whereas, one expects that the set of discretized manifolds considered in the 
dynamically triangulated approach is uniformly distributed over the space of all riemannian 
structures. 
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This is very appealing for discussing the phase structure in the space of the coupling con- 
stants of the theory: the cosmological constant, and the gravitational coupling constant. By 
defining the regularized partition function as a sum over topologically equivalent triangula- 
tions, results for continuum quantum gravity can be extracted by looking for critical points, 
in the space of coupling constants, where the observables of the model, such as the average 
number of simplices, diverge and obey scaling relations. This scaling behavior allows for a 
renormalization of the couplings in terms of the given edge length of the simplices so as to 
obtain finite values for the volume and other simple geometrical quantities characterizing 
the extended configurations dominating the theory in the continuum limit. In other words, 
one looks for the onset of a regime where the details of the simplicial approximation become 
irrelevant and a continuum theory can be constructed. 

There is a general comment that should be made at this stage. In order to provide general 
entropy estimates for discretized manifolds, we find expedient to introduce another kind of 
discretization, yet, besides dynamical triangulations and Regge calculus. This discretization 
is associated with metric ball coverings of given radius. While not so useful from a numerical 
point of view, it provides a good analytical edge on discrete quantum gravity. It blends 
the simple combinatorial structure of dynamical triangulations with the deep geometrical 
content of Regge calculus. We feel that such variety of possible models should be considered 
with a positive attitude, by taking advantage of the respective good properties rather than 
emphasizing the drawbacks, as is often done. Thus, even if in what follows we emphasize 
dynamical triangulations versus Regge calculus, this does not mean that we wish to privilege 
that formalism with respect to the other. The issue we address, the counting of the number 
of topologically equivalent discretizations of an n-manifold of given volume (n 1 3) is 
present in both cases (see [Fro]), but it has been recently mostly emphasized for dynamical 
triangulations. 

As is well known, the main development of discrete models of quantum gravity, and in 
particular of dynamically triangulated gravity, has resulted from their role in providing a 
method for regularizing non-critical bosonic string theory (see e.g., [FRS] for a review). This 
latter can be seen as two-dimensional quantum gravity interacting with D scalar fields, where 
D is the dimension of the space where the string is embedded. The associated dynamically 
triangulated models correctly reproduce, in the continuum limit, the results obtained by 
conformal field theory. In particular, they are consistent with the computation [KPZ]. in the 
context of the Liouville model, of the entropy of closed surfaces with Euler characteristic 
x, area A and interacting with matter fields with central charge c 5 1, viz.. 

s 
X 

(A) z (A)AA(X(~)/~)(Y*“-~)- 1 (1) 

where A is a suitable constant and Ktr, the string exponent, is given as a function of the 
central charge by 

?+ir = & (c - 1 - J(25 - c)(l - c)) . (2) 

The above expression for Ystr is valid as long as c 5 1, and it appears to make sense only 
in the weak coupling phase corresponding to c (or equivalently D) smaller than I. For c > 1, 
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conformal field theory becomes unstable, and the above expression for the string exponent 
is no longer reliable (recently, an extension of the KZP scaling to the c > 1 case has been 
proposed by Martellini et al. [MSY]). Roughly speaking, it is believed that in this regime 
the surfaces develop spikes and long tubes, and as seen from a large distance the surface 
is no longer a two-dimensional object. It collapses into a branched polymers configuration 
[DFJ]. It is important to stress that two-dimensional dynamically triangulated models are 
well defined also in these cases, where conformal field theory is no longer trustworthy, and 
they provide a technique accessible to computer simulations. 

A natural question concerns the possibility of extending the techniques and some of 
the general results of the two-dimensional case to the dimension three and four. This re- 
search program has been undertaken by various groups by performing extensive computer 
simulations of three- and four-dimensional triangulated manifolds. 

Although these simulated systems have a rather small size as compared to the simulations 
used for 2D-gravity (typically one puts together lo4 four-simplices, whereas in the two- 
dimensional case triangulations with 10’ triangles are not unusual [Ag]) interesting results 
about critical phenomena already emerge (see [Dl] for an excellent review). Such results 
are qualitatively similar in the 3D and 4D cases [Ag,AJ,Va] in the sense that the phase 
diagram of the theory as a function of the cosmological constant and the gravitational 
coupling constant shows the existence of a critical point. Here, the configurations dominating 
the statistical sum change from being crumpled non-extended objects to extended, finite 
Hausdorff-dimensional, objects. In three dimensions there is a rather strong evidence that 
this change is associated with a first-order transition indicating the absence of a continuum 
limit. Whereas, in four dimensions computer simulations indicate that the transition between 
the crumpled and the extended phases may be of a continuous nature. 

There is increasing evidence to the soundness of this picture, and at least from a gen- 
eral foundational point of view, dynamically triangulated gravity seems to be now well 
established also in dimension three and four. However, there still remain some outstanding 
problems. The most obvious one is to obtain explicit analytic control on the theory (here 
we do not consider as dynamically triangulated models the formulations of 3D-gravity a 
la Ponzano-Regge). It is not yet known if it is possible to obtain such a control, and the 
best results at the moment come from an interplay between computer simulations and the 
general analytic properties of the various models considered (e.g., the choice of the most 
appropriate measure on the set of triangulated manifolds [BM]). 

The experience with the two-dimensional case shows that the delicate point here is to 
ascertain if the number of dynamically triangulated n-manifolds (n > 2) of given volume 
and fixed topology grows with the volume at most at an exponential rate. This is a basic 
entropy bound necessary for having the correct convergence properties of the partition 
function defining the model. 

In the case of surfaces, the required entropy bounds, such as (l), are provided either 
by direct counting arguments, or by quantum field theory techniques [BIZ,FRS] as ap- 
plied to graph enumeration, a technique that has found utility in a number of far reaching 
applications in surface theory [Wtl,Ko,Pe]. In higher dimensions, the natural generaliza- 
tions of such approaches are not viable even if numerical as well as some analytical evidence 
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[Am,ADF,Ag] shows that exponential bounds do hold in simple situations (typically for 
manifolds with n-sphere topology). Recently, it has even been argued, on the basis of some 
numerical evidence, that an exponential bound may fail to hold in dimension four [CKR], 
but this analysis is quite controversial [AJ]. Conversely, Boulatov has provided a nice ar- 
gument for proving that for a dynamically triangulated homotopy three-sphere there is an 
exponential bound [Bou] (the constants in the estimates are not characterized, however). 
Thus, a systematic method for providing explicit entropic bounds relating topology to the 
number of topologically equivalent triangulations appears as a major open issue in higher 
dimensional dynamically triangulated gravity [D I]. 

Without any control on the topology of manifolds, there is no hope in the search for 
an exponentially bounded entropy function for the number of equivalent triangulations. 
For instance, it can be shown [Am] that the number of distinct triangulations on (three)- 
manifolds, with given volume V and arbitrary topological type, grows at least factorially 
with V. Thus suitable constraints on the class of riemannian manifolds considered are 
necessary for having exponential growth of the number of equivalent triangulations. 

By analogy with the two-dimensional case, one may simply fix the topology a priori 
(e.g., an n-sphere topology, n = 3, n = 4). This is a pragmatic point of view. It has the 
advantage of simplicity, but it has the serious drawback that it does not allow to easily 
deal with fluctuating topologies, either because it is difficult to know a priori what kind 
of topological invariants are going to enter the entropy estimates in dimension n > 3, or 
because a topological classification of the relevant class of manifolds is often lacking, e.g., 
in the case of three-manifolds. 

The point of view implicit in the approach above is also motivated by the assumption 
that the topology of a manifold is not apparently under control in terms of the geometrical 
invariants characterizing the size of a manifold (and hence its entropy) namely the volume 
or other simple geometrical elements such as the diameter, and bounds on curvatures. 

However, the experience with recent developments in riemannian geometry may suggest 
a change of this restrictive viewpoint. Such an indication comes from a basic theorem due 

to Cheeger (see e.g., [Ch] for a readable account of such finiteness theorems) according 
to which, for any given dimension, there are a jinite number qf homeomorphism types in 
the set of compact riemannian manifolds with volume bounded below, diameter bounded 
above and sectional curvature bounded in absolute value. Further finiteness results of this 
type, even under weaker control on the size of the manifolds, have been obtained I Pt,GPWl, 
recently. A typical example in this sense is afforded by considering for arbitrary r E R, 

II E Rf, D E [w+ and integers n 1 3, the set of closed connected riemannian n-manifolds, 
M whose sectional curvatures satisfy set(M) > r, whose volume satisfies Vol(M) > u. 
and whose diameter is bounded above by D, diam(M) 5 D. This is an infinite-dimensional 
collection of riemannian structures, with different underlying topologies. A huge space, for 
which one can prove finiteness of the homotopy types (in any dimension), finiteness of the 
homeomorphism types (in dimension n = 4), and finiteness of diffeomorphism types (in 
any dimension n > 5). 

Even more generally, one may consider the set of all metric spaces (smooth manifolds, and 
more general spaces, e.g., negatively curved polyhedra) of Hausdorff dimension bounded 
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above and for which a (Toponogov’s) comparison theorem for geodesic triangles locally 
holds (Aleksandrov spaces with curvature bounded below [BGP,Per]). On a strict geomet- 
rical side, we wish to stress that these are the spaces which arise naturally if one wishes to 
consider simplicial approximations to riemannian manifolds. 

It must be stressed that the imposition of (lower) bounds on sectional curvatures does 
not seem to be fully consistent with the generic triangulations considered in dynamically 
triangulated models of quantum gravity. A simple two-dimensional example is afforded by 
noticing that the local contribution to curvature corresponding to a given vertex is n/3(6-d), 
where d is the order of the vertex (i.e., the number of edges meeting at it). A priori, when 
considering dynamical triangulations, there is no natural bound to the order d, and the local 
curvature may grow arbitrarily large. Thus spaces of bounded geometry may appear quite 
unsuitable as an arena for discussing dynamically triangulated models. 

The fact is that the use of spaces of bounded geometry should be considered simply as 
a technical step needed in order to get definite mathematical control on problems raised 
when dealing with enumerative problems for dynamical triangulations. In particular, once 
the entropy estimates are obtained, we should remove the dependence on the cut-offs artifi- 
cially introduced. A priori, this removal would call for a rather delicate (inductive) limiting 
procedure, viz., considering the behavior of the sequence of entropy estimates on the nested 
collection of spaces of bounded geometry obtained by letting the lower bound to the cur- 
vature go to (minus) infinity. Actually, the entropy bounds obtained by us turn out to be 
not sensible to the cut-offs, and the potential shortcomings of the use of spaces of bounded 
geometry do not appear. 

The possibility of getting some mathematical control on the entropy problem by us- 
ing spaces of bounded geometry is suggested by the topological finiteness results recalled 
above. To clarify somehow this assertion, let us recall that in any given dimension the 
set of manifolds which satisfies the hypothesis of these finiteness theorems has a com- 
pact closure in a Hausdorff-like topology [Grl]. This topology is naturally adapted to 
the coarse grained point of view implicit in the discrete approaches to quantum gravity, 
thus one may reasonably assume that partition functions associated with such discrete 
models are continuous in such topology. Since the configuration space is compact, and 
the partition functions are continuous, it follows that out of the sequence of bounded 
partition functions corresponding to finer and finer triangulations, we can extract a con- 
verging subsequence. This implies the corresponding existence of well-behaved entropy 
bounds. 

Obviously, this is a heuristic argument, which however may serve as a guiding principle. 
Indeed, following this viewpoint, we proved [CM41 that, up to a sum over inequivalent 
orthogonal representations of the fundamental group, it is possible to explicitly provide the 
entropy function counting the topologically equivalent ways of covering and packing, with 
metric balls of given radius, n-manifolds of bounded geometry, for any n > 3 (notice that 
here topological equivalence stands for simple-homotopy equivalence). Strictly speaking 
this is not the entropy function for dynamical triangulations of the given manifold. However, 
it is easily seen (see the following paragraph) that with a dynamically triangulated manifold 
there is naturally associated a metric ball covering, and that the number of topologically 
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equivalent metric ball coverings of given radius is not-smaller than the number of corre- 
sponding dynamical triangulations. Thus, the entropy function determined in (CM41 is an 
upper bound to the entropy function for dynamical triangulations (for manifolds of bounded 
geometry). This argument is useful for establishing that one has exponential bounds on the 
number of equivalent triangulations. However, it is important to stress that if does not ullow 
to determine the critical exponents for dynamically triangulated models (for n > 3). As a 
matter of fact, already for n = 2, critical exponents for geodesic ball coverings can be quite 
different from the Ystr appearing in (1). This may be seen as a rather obvious consequence 
of the intuitive fact that there are many more states accessible to coverings rather than to 
triangulations, since the latter are combinatorially more rigid. 

The analysis in [CM41 was rather incomplete, in particular we did not attempt any explicit 
determination of the critical exponents for geodesic ball coverings, and the connection 
between this type of discretization and the more familiar ones, like Regge calculus and 
dynamical triangulations, was quite unclear. Here we carry out an important step in this 
direction by explicitly providing an entropy estimate for geodesic ball coverings of four- 
dimensional manifolds and by determining bounds to the corresponding critical exponent. 
On passing, we also discuss the two-dimensional case, again by explicitly determining 
entropy estimates and bounds for the critical exponents. 

I. 1. Summary of the results 

The results obtained can be summarized as follows. 
Entropy estimates in a given representation of the fundamental group. Let M be an 

n-dimensional manifold (n > 2) of given fundamental group rrr (M), and let [H] E 
Hom(irt (M), G)/G denote a conjugacy class of representations of nt (M) into a Lie group 
endowed with an Ad-invariant, symmetric, non-degenerate bilinear form (i.e., with an Ad- 
invariant metric). 

We think of M as generated by a configuration of h metric balls {B(i)) of fixed radius c 
in such a way that the E-balls cover M while the ic-balls are disjoint. Moreover, at most d 
balls are allowed to mutually overlap, (such d depends on the geometry of the underlying 
manifold, but it is otherwise independent from c). We refer to the set of balls with radius 
;E as an it-geodesic ball packing of M, while the same set of balls with radius c defines 
the corresponding e-geodesic ball covering of M. 

A priori, the balls are topologically non-trivial, namely both the balls themselves and 
their mutual intersections are not assumed to be contractible (this allows for arbitrarily 
large positive curvature in the underlying manifold). Explicitly, the non-trivial topology 
of the balls is described by their twisted cohomology groups HCT with coefficients in a 
certain (adjoint) flat bundle associated with the representation 19. Roughly speaking, such 
groups provide colors to the balls of the covering, and it is assumed that there are h in- 
equivalent colors to distribute over the h balls. Any two such colorings are considered 
combinatorially inequivalent if the resulting patterns of the balls belong to distinct orbits of 
the action of the symmetric group acting on the (centers of the) balls. We prove that such 
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combinatorially inequivalent colorings can be used to construct, in the given representation 
0 : nl (M) + G, the distinct minimal geodesic ball coverings of M, and thus, according 
to the previous remarks, they can also be used to enumerate the number of topologically 
equivalent triangulations (definitions of what we mean for distinct coverings and distinct 
dynamical triangulations of a given manifold M are given in Section 2.1). 

To be more precise on the meaning of topological equivalence adopted here, it must be 
stressed that we are actually counting equivalent triangulations having a common simple 
homotopy type. This latter remark may need a few words of explanation. 

A good counting function of utility for simplicial quantum gravity should provide the 
number of geodesic ball coverings in manifolds which are piecewise-linearly (PL) equiv- 
alent. But according to the finiteness theorems recalled above, asking for such a counting 
function is too much. In dimension three we have not yet control on the enumeration of 
the homeomorphism types while in dimension four no elementary enumeration is afford- 
able for the PL types (by Cerf’s theorem we know that every PL 4-manifold carries a 
unique differentiable structure; there can be only countably many differentiable structures 
on a compact topological 4-manifolds, while there are uncountably many diffeomorphism 
classes of 4-manifolds homeomorphic to R4; in this sense counting PL structures is directly 
connected with the enumeration of differential structures). Thus in the physically significant 
dimensions there is no obvious enumerative criterion for PL structures. 

The necessary compromise between what can be counted and what is of utility for quan- 
tum gravity brings into evidence a particular equivalence relation in homotopy known as 
simple homotopy equivalence. Two polyhedra are simple-homotopy equivalent if they have 
PL homeomorphic closed regular neighborhoods in some W. This notion of topological 
equivalence associated with simple homotopy may seem too weak for our enumerative pur- 
poses, but as we shall see it is sufficient for providing a detailed exponential bound to the 
enumeration of dynamical triangulations. 

It is also important to stress that even if the balls are topologically trivial (i.e., if they 
are contractible) the labeling associated with the use of the twisted cohomology H,* is non- 
trivial. In such a case, Hc reduces to the assignment of the flat bundle, over the corresponding 
ball, associated with thk representation 0. If all balls are contractible, all such bundles are 
isomorphic, but, obviously, not canonically. Thus, HCT can be still used as non-trivial labels 
for counting purposes. 

The explicit counting of the inequivalent orbits, under permutations of the balls, asso- 
ciated with such colorings is obtained by means of P6lya’s enumeration theorem [Bo]. 
More precisely, P6lya’s theorem is used for counting geodesic ball packings, so as to avoid 
the unwieldy complications arising from the intersections of the balls when they cover the 
manifold. The counting is then extended by a simple argument, (relying, however on a 
deep compactness theorem by Gromov) to the geodesic ball coverings associated with the 
packings. 

From this enumeration we get that, in the given representation 8, the number, Bcov (A”, k), 
of distinct geodesic ball coverings with h balls that can be introduced in the manifold M is 
bounded above, for large h, by 
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&AA”, A) i 
1 

&A”(M) 
9 1 + O(h”*)). (3) 

where n denotes the dimension of M, Ait (M) is the Reidemeister torsion of M in the given 
represent&on 8 : nt (M) + G, and where 27r is, roughly speaking, the Reidemeister torsion 
of the dominant twisted cohomology group of the balls. 

Recall that, given a manifold A4 and a representation of its fundamental group rrt (M) in 
a flat bundle go, the Reidemeister torsion is a generalized volume element constructed from 
the twisted cohomology groups H’(M, ~0). In even dimension, if M is compact, orientable, 
and without boundary, it can be shown by PoincarC duality that An(M) = 1. However, this 
latter result does not hold for the balls of the covering since they have a boundary. In such 
a case, the corresponding torsion 1z, depends non-trivially on the metric of the ball, too. 

Topologically speaking, (3) is estimating the number of geodesic ball coverings on a 
manifold of given simple homotopy type (for a given .TTI (M) and a given representation 0, 
this simple homotopy type is characterized by the torsion). If one is interested in counting 
coverings (and triangulations) just on a manifold of given fundamental group, then (3) 
reduces to 

(4) 

which does not depend any longer on the representation B : ~1 (M) + G, and provides 
a significant exponential bound to the number of distinct coverings that one can introduce 
on M. 

In particular, the number of distinct geodesic ball coverings, with A balls, that can be 
introduced on a surface C of given topology turns out to be asymptotically bounded by 

(5) 

This bound is perfectly consistent with the classical result provided by W. Tutte [BIZ] 
according to which the number of distinct triangulations, with h vertices, of a surface (with 
the topology of the sphere) is asymptotically 

(6) 

The finer entropy estimates (3) do depend on the particular representation 8, thus a 
more interesting object to discuss is their average over all possible inequivalent represen- 
tations in the given group G obtained by integrating (3) over the representation variety 
Hom(nt (ML G)/G. 

Entropy estimates atfied A., and n = 2. Denoting by 8 the dominant representations (in 
a formal saddle point evaluation of the integral over inequivalent representations) we get 
for the entropy estimate, up to some inessential constants 
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J fk,“(~“, k) 
Hom(m (ML Q/G 

((h-1)/2)dim(G)-(dim(z(8))/2-1/21 (1 + . . .) 

(7) 

where Homo denotes the (finite) set of representations contributing to the saddle point eval- 
uation, h denotes the genus of the surface M, and z(O) denotes the centralizer of 8(nt (M)) 
in the Lie group G. 

We define the critical exponent r](G) associated with the entropy function Bcov(Afl, A) 
by means of the relation 

s 
Bcov(Ag, IL) = Meas 

( 

Hom(lrt (M), G) 
G > 

exp[ch]h’7”uP-3, (8) 

Hom(n~ CM), Q/G 

where c is a suitable constant (depending on G). Then (7) provides also a bound for n(G) 
given by (for a given 6’ E Homo) 

q(G) 5 2+ (1 - h)i(dim(G)) + i(l - dim(z(0))). 

For instance, for G = U(l), we get 

(9) 

r](G) 5 2 + ;(I - h), (10) 

which is consistent with KPZ scaling. This bound is an equality in the obvious case h = 1, 
while it is sharp in the remaining cases. It is likely that (9) holds also in the case where there 
is a strong coupling of 2D-gravity with matter, namely in the regime where KPZ scaling 
breaks down. 

Entropy estimates at&ed h, and n = 4. In the four-dimensional case we obtain, again 
through a formal saddle point evaluation, and up to some inessential factors 

(11) 

where x (M) is the Euler-Poincare characteristic of M and b(2) is the second Betti number 
associated with H,*(M). 

Notice that in the above expressions we can set Ai = 1 (the torsion being trivial 
in even dimensions for a closed, orientable manifold). The bound on the critical exponent 
corresponding to this entropy estimate is (for a given 0 E Homo) 

n(G) I $ + idim(G)x(M) - ib(2). (12) 

This exponent, evaluated for the four-sphere, takes on the value y which is larger than 
the corresponding exponent obtained through numerical simulations (see e.g., [Va]). In this 
latter case, the available values of this exponent are typically affected by a large uncertainty. 
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Nonetheless, numerical evidence seems to indicate a rough value around the figures 0.40, 
0.57, thus our bound is strict and likely not optimal. 

We are perfectly aware that this work is incomplete in many respects. In particular, 
it is annoying that one does not get an entropy estimate directly for triangulated four- 
manifolds but rather for geodesic ball covered manifolds. However, this estimate is sufficient 
for controlling the number of topologically (in the simple-homotopical sense) equivalent 
dynamical triangulations on four-manifolds of bounded geometry, and it is, we believe, 
a good starting point for a further understanding of discrete models of four-dimensional 
quantum gravity. (See also note added in proof at the end.) 

We now turn to a more extensive discussion of our subject. 

2. Metric ball coverings and triangulated manifolds 

As recalled in the introductory remarks, in order to regain a smooth geometric perspective 
when dealing with a dynamically triangulated manifold 7, we have to move our observation 
point far away from 7 (for rather different reasons this same point of view, which is the 
essence of a scaling limit, is advocated in geometric group theory [Gr2]). In this way, and 
under suitable resealing for the coupling constants of the theory, the details of the triangula- 
tion 7 may fade away at criticality, and the simplices of 7 coalesce into extended objects, 
generalized metric manifolds representing the s,~ace--time manifolds (or more correctly, an 
Euclidean version of them) dominating the statistical sum of the model considered. 

Technically speaking, this limiting procedure appeals here to a topology in the set of met- 
ric spaces coming along with a Hausdorff-type metric. This was rather explicitly suggested 
in 198 I by Frohlich [Fro] in his unpublished notes on Regge’s model. For completely differ- 
ent reasons. and more or less in the same period, this notion of topology was made precise 
by Gromov [Grl], and used by him very effectively to discuss the compactness properties 
of the space of riemannian structures. A detailed analysis is presented in [Grl,CM2], and 
instead of repeating it here we give the intuition and a few basic definitions. The rough 
idea is that given a length cut-off t, two riemannian manifolds are to be considered near in 
this topology (one is the E-Gromov-Hausdorff approximation of the other) if their metric 
properties are similar at length scales L > E. This intuition can be made more precise 
as follows. 

Consider two riemannian manifolds Mi and A42 (or more in general any two compact 
metric spaces) let dm, (., .) and d~*(., .) respectively denote the corresponding distance 
functions, and let 4 : MI --f M2 be a map between Mt and M2 (this map is not required to 
be continuous). If 4 is such that: (i) the c-neighborhood of @(Ml) in MI; is equal to M?; 
and (ii) for each .x, y in MI we have 

(13) 

then 4 is said to be an t-Hausdoflapproximation. The Gromov-Hausdofldistance between 
the two riemannian manifolds Ml and M2, dc (Ml, Mz), is then defined according to [Gr I 1. 
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is a minimal geodesic y from y to p such that the angle between v and p(0) is not greater 
than 4~. 

Definition 3. For any manifold M E R(n, r, D, V) and for any given c > 0, it is always 
possible to find an ordered set of points (pt , . . , p,t~} in M, so that, [GP] 

(i) the open metric balls (the geodesic balls) B~(p;,e) = (x E M 1 d(x, pi) -C ??), i = 
1, . . , N, cover M; in other words the collection 

kl?...~PWl 

is an E-net in M. 

(14) 

(ii) the open balls B~(pi, $c), i = 1,. . . , N, are disjoint, i.e. (~1,. , p,~] is a minimul 
E-net in M. 

Similarly, upon considering the higher-order intersection patterns of the set of balls 
( BM (pi, c)), we can define the two-skeleton J’(*)(M), and eventually the nerve fl{ Bi ) of 
the geodesic balls covering of the manifold M. 

Definition 4. Let (Bi(E)} denote a minimal c-net in M. The geodesic ball nerve N(Bi] 
associated with {Bi(c)] is the polytope whose k-simplices ~j::~,,,~~+, , k = 0, 1,. . . , are 
defined by the collections of k + 1 geodesic balls such that Bt n B2 f’ . fl Bk+l # 44. 

Thus, for instance, the vertices p/O) of N{ Bi] correspond to the balls Bi (6); the edges 

p,!,!) correspond to pairs of geodesic balls {Bi (E), Bj (t)} having a non-empty intersection 

Bi (E) fl Bj (E) # 8; and the faces p:$ correspond to triples of geodesic balls with not-empty 
intersection By fl Bj(E) n I&(E) # a. 

Remark 1. Notice that, in general, this polytope has a dimension which is greater than the 
dimension IZ of the underlying manifold. However, as t -+ 0, such dimension cannot grow 
arbitrarily large being bounded above by a constant depending only on r, n and D (see 
below). 

Minimal geodesic ball coverings provide a means for introducing a short-distance cut- 
off as for a dynamical triangulation, while hopefully mantaining a more direct connection 
with the geometry and in particular with the topology of the underlying manifold. The basic 
observation here is that such coverings are naturally labeled (or colored) by the fundamental 
groups of the balls, Indeed, according to the properties of the distance function (see for 
instance [Ch]) given et < ~2 5 00, if in Bi(E2)\Bi(El) there are no critical points of the 
distance function Ui, then this region is homeomorphic to 3 Bi (~1) x [cl, ~21, and 3 Bi (~1) is 
a topological submanifold without boundary. One defines a criticality radius Ei for each ball 
Bi (E), as the largest E such that Bi (E) is free of critical points. Corresponding to such value 
of the radius E, the ball Bi (E) is homeomorphic to an arbitrarily small open ball with center 
pi, and thus it is homeomorphic to a standard open ball. It can be easily checked, through 
direct examples, that the criticality radius of geodesic balls of manifolds in R(n. r, D, V) 
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can be arbitrarily small (think of the geodesic balls drawn near the rounded off tip of a cone) 
thus arbitrarily small metric balls in manifolds of bounded geometry are not necessarily 
contractible, and therefore, in general, the Bi (E) are not homeomorphic to a standard open 
ball. 

2.1. Connections with dynamical triangulations 

Since the geodesic ball coverings are to play an important role in our development, a few 
remarks about the connection between such coverings and dynamical triangulations are in 
order. 

As recalled in the introductory remarks, a dynamical triangulation of a (pseudo)-manifold 
can be used to produce a metric on that manifold, by declaring all the simplices in the trian- 
gulation isometric to the standard simplex of the appropriate dimension, and by assuming 
that the edge lengths are all equal to some fundamental length. An n-dimensional dynamical 
triangulation is actually constructed by successively gluing pairs of such flat n-simplices 
along some of their (n - 1)-faces, until one gets a complex without boundary. This gives a 
collection of compatible metrics, on pieces of the resulting pseudo-manifold, which can be 
extended to a genuine metric, since between any two points there is a path minimizing the 
distance (one speaks of a pseudo-manifold since, for n > 2, the complex constructed by 
this gluing procedure may have some vertices whose neighborhood is not homeomorphic 
to the standard Euclidean ball). 

We identify two dynamical triangulations of the same underlying manifold M if there is 
a one-to-one mapping of vertices, edges, faces, and higher-dimensional simplices of one 
onto vertices, edges, faces, and higher-dimensional simplices of the other which preserves 
incidence relations. If no such mapping exists the the two dynamical triangulations are 
said to be distinct. Notice that sometimes one says that such dynamical triangulations are 
combinatorially distinct. Since this may be source of confusion (in dynamical triangulation 
theory the notion of combinatorial equivalence is synonimus of PL-equivalence, see below) 
we carefully avoid the use of the qualifier “combinatorial” in this context. 

On a dynamical triangulation so constructed, one can define metric balls, and consider 
minimal geodesic ball coverings. Actually, it is clear that in a generic metric space there 
are many distinct ways of introducing minimal geodesic ball coverings with a given radius 
of the balls. As a simple example, consider a portion of Euclidean three-space (one may 
wish to identify boundaries so to obtain a flat three-torus). It is well known that a portion of 
Euclidean three-space can be packed and covered, with small spheres of a given radius, in 
many inequivalent ways, to the effect that in the limit, for lR3, there are uncountably many 
such coverings. 

AS for dynamical triangulations, we identify two geodesic ball coverings, (Bill and 
(&]2, of the same underlying manifold M if there is a one-to-one mapping of vertices, 
edges, faces, and higher-dimensional simplices of the nerve of (Bi] 1 onto vertices, edges, 
faces, and higher-dimensional simplices of the nerve of [ Bk]2, which preserves incidence 
relations. If no such mapping exists the two geodesic ball coverings are said to be distinct. 
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Generally, given a manifold triangulated with n-dimensional simplices with a given edge 
length, we can always introduce a minimal geodesic ball covering whose properties are 
closely connected with the properties of the underlying triangulation. This can be done 
according to the following definition. 

Definition 5. Let (M, T) denote a manifold (a compact polyhedron) triangulated with fixed 
edge length equilateral simplices, and let 6 denote the length of the edges. With each vertex 
pi belonging to the triangulation, we associate the largest open metric ball contained in the 
open star of pi. Then the metric ball covering of (M, T) generated by such balls (Bi] is a 
minimal geodesic ball covering. It defines the geodesic ball covering associated with the 
dynamically triangulated manifold (M, T). 

It is immediate to see that the set of balls considered defines indeed a minimal geodesic 
ball covering. The open balls obtained from { Bi ) by halfing their radius are disjoint being 
contained in the open stars of (pi) in the baricentric subdivision of the triangulation. The 
balls with doubled radius cover (M, T), since they are the largest open balls contained in 
the stars of the vertices {pi) of T. 

In order to connect the enumeration of distinct geodesic ball coverings with the enumera- 
tion of distinct triangulations, we recall that any two dynamical triangulations are said to be 
Combinatorially Equivalent if the two triangulations can be subdivided into the same finer 
triangulation. In other words, if they correspond to triangulations TI and T2 of the same 
abstract compact polyhedron P. This last remark follows since any two triangulations of a 
compact polyhedron have a common subdivision. Notice that quite often, when considering 
a particular triangulation (M, T) is standard usage to identify the abstract polyhedron M 
with IT 1, the union of the cells of T (the underlying polyhedron associated with 7). The 
more so when dealing with dynamical triangulations, where the emphasis is on the actual 
construction of T. This identification is a source of confusion in enumerative problems and 
we shall keep distinct the abstract polyhedron M from 1 T 1. 

The relation between a dynamically triangulated manifold and the associated geodesic 
ball covering implies the following lemma. 

Lemma 1. If (M, TI) and (M, T2) are any two distinct combinatorially equivalent jxed 
edge-length triangulations, then the corresponding geodesic ball coverings [ Bi ) 1 and ( B; )2 
are distinct. 

Prooj This amounts to prove that the nerve associated with geodesic ball covering corre- 
sponding to a fixed edge-length triangulation is isomorphic, as a simplicial complex, to the 
given triangulation. If this were not the case, then, there should be at least one k-simplex 

in the nerve, P:, . ..ir+. , associated with the mutual intersections of k + 1 balls, for some 
k > 1, such that the vertices of such k-simplex correspond to vertices of the triangulation 
not connected by links. But then the corresponding balls Bi cannot mutually intersect, since 
they are contained in the disjoint open stars of the respective vertices. Thus, there cannot 
be such a simplex p:, +.~I to begin with. 0 
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In general, by choosing a different prescription for geodesic ball coverings associated 
with fixed edge-length triangulations (e.g., by choosing differently the centers of the balls 
&) we get a nerve which is not necessarily isomorphic to the dynamical triangulation itself. 
And, as already stressed, the dimension of the nerve is, in general, larger than the dimension 
of the underlying manifold, and even if we restrict our attention, say, to the four-skeleton, 
we get a complex which is not the triangulation of a four-manifold. 

If we combine this remark with Lemma 1 then we get the following proposition. 

Proposition 1. For a given minimal short-distance cut-08 6 the number of distinct 
geodesic ball coverings is not smaller than the number of corresponding dynamical tri- 
angulations. 

Incidentally, by means of the above construction of a geodesic ball covering associated 
with a given fixed edge-length triangulation, we can also explain, in terms of dynamical 
triangulations, the origin of the possible non-trivial topology of the balls. 

Recall that in an n-dimensional simplicial manifold each vertex has a sufficiently small 
neighborhood which is homeomorphic to the standard n-dimensional Euclidean ball. And, 
in such a case, the above minimal geodesic ball covering is necessarily generated by con- 
tractible balls. Thus, non-contractible balls are present if we allow for dynamical triangu- 
lations associated with simplicial pseudo-manifolds. And this is the typical case, at least in 
dimension n > 2, since pseudo-manifolds are the natural outcome of the process of gluing 
n-simplices along their (n - 1)-faces. 

2.2. Homotopy and geodesic ball coverings 

The above remarks suggest that one should be careful in understanding in what sense, 
for E sufficiently small, the geodesic ball nerve gives rise to a polytope whose topology ap- 
proximates the topology of the manifold M E R(n, r, D, V). This is a natural consequence 
of the fact that the criticality radius for the geodesic balls is not bounded below. In full 
generality, the geodesic ball nerve controls only the homotopy type of the manifold [GPW]. 
This follows by noticing that the inclusion of sufficiently small geodesic balls into suitably 
larger balls is homotopically trivial, and the geodesic ball nerve is thus a polytope which is 
homotopically dominating the underlying manifold, viz., there exist maps f : M + N(Bi), 
and g : N(Bi) + M, with g . f homotopic to the identity mapping in M. 

It may appear rather surprising, but this homotopical control is more than sufficient for 
yielding the entropic estimates we are looking for. 

On the geometrical side, there are a wealth of good properties of geodesic ball cover- 
ings which make them particularly appealing for applications in simplicial quantum grav- 
ity. As a good start, we can notice that the equivalence relation defined by manifolds with 
(combinatorially) isomorphic geodesic ball one-skeletons partitions R(n, r, D, V) into dis- 
joint equivalence classes whose finite number can be estimated in terms of the parameters 
n, k, D. Each equivalence class of manifolds is characterized by the abstract (unlabeled) 
graph r(,) defined by the l-skeleton of the L(c)-covering. The order of any such graph 
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(i.e., the number of vertices) defines the filling function N:f;, while the structure of the 
edge set of r(,) defines the (first-order) intersection pattern Z(,)(M) of (M, (Bi (c))). 

It is important to remark that on R(n, r, D, V) neither the filling function nor the inter- 
section pattern can be arbitrary. The filling function is always bounded above for each given 
E, and the best filling, with geodesic balls of radius t, of a riemannian manifold of diameter 
diam(M), and Ricci curvature Ric(M) > (n - l)H, is controlled by the corresponding 
filling of the geodesic ball of radius diam(M) on the space form of constant curvature given 
by H, the bound being of the form NJ(‘) 5 N(n, H(diam(M))‘, (diam(M))/O [Grl]. 

The multiplicity of the first intersection pattern is similarly controlled through the ge- 
ometry of the manifold to the effect that the average degree d(T) of the graph Ttc) (i.e., 
the average number of edges incident on a vertex of the graph) is bounded above by a 
constant as the radius of the balls defining the covering tend to zero (i.e., as t + 0). Such 
constant is independent from c and can be estimated [Gp] in terms of the parameters n, and 
H(diam(M))2 (it is this boundedness of the order of the geodesic ball coverings that allows 
for the control of the dimension of the geodesic ball nerve). 

As expected, the filling function can be also related to the volume u = Vol(M) of the under- 
lying manifold M. This follows by noticing that [Zh] for any manifold M E R(n, r. D, V) 
there exist constants Ct and C2, depending only on n, r. D, V, such that, for any p E M. 
we have 

CIEn I Vol(&(p)) 5 c2cn, (15) 

with 0 I: E 5 D (actually, here and in the previous statements a lower bound on the Ricci 
curvature suffices). Explicitly, the constants Ct and C2 are provided by 

c,z v inf 

Vol’(B(D)) o’E’D tn 
0 

and 

0 

(16) 

(17) 

where Vol’(B( D)) denotes the volume of the geodesic ball of radius D in the (simply 
connected) space of constant curvature -r, and D, r, V, n are the parameters characterizing 
the space of bounded geometries R(n, r, D, V) under consideration. 

Thus, if u is the given volume of the underlying manifold M, by the BishopGromov 
relative comparison volume theorem we obtain that there exists a function pt (M), depending 
on n, r, D, V, and on the actual geometry of the manifold M, with Cl 5 (~1 (M))-’ 5 C2, 
and such that, for any m 2 mg, we can write 

N”‘(M) = vpl (M)E-n. 6 (18) 

We conclude this section by recalling the following basic finiteness results. They provide 
the topological rationale underlying the use of spaces of bounded geometries in simplicial 
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quantum gravity. We start with a result expressing finiteness of homotopy types of manifolds 
of bounded geometry [GPW]. 

Theorem 1. For any dimension n > 2, and for E suficiently small, manifolds in 
R(n, r, D, V) with the same geodesic ball l-skeleton f(,) are homotopically equivalent, 
and the number of diferent homotopy-types of manifolds realized in R(n, r, D, V) is finite 
and is a function of n, V-’ D” and r D2. 

(Two manifolds Mt and M2 are said to have the same homotopy type if there exists a 
continuous map 4 of Mt into M2 and f of M2 into Ml, such that both f .@ and 4 . f are 
homotopic to the respective identity mappings, ZM, and IM,. Obviously, two homeomorphic 
manifolds are of the same homotopy type, but the converse is not true.) 

Notice that in dimension three one can replace the lower bound of the sectional curvatures 
with a lower bound on the Ricci curvature [Zh]. Actually, a more general topological finite- 
ness theorem can be stated under a rather weak condition of local geometric contractibility. 
Recall that a continuous function r+Q : [O,a) -+ [Wf, a! > 0, with e(O) = 0, and @(E) 1 e, 
for all E E [0, a), is a local geometric contractibility function for a riemannian manifold 
M if, for each x E M and E E (O,a), the open ball B(x,E) is contractible in B(x, I/J(E)) 
[GrP] (which says that a small ball is contractible relative to a bigger ball). Given a local 
geometric contractibility function one obtains the following [GrP]. 

Theorem 2. Let + : [O,a) + IWf, a > 0, be a continuousfunction with q(e) 1 E for all 
E E [0, a) and such that, for some constants C and k E (0, 11, we have the growth condition 
e(t) _< Cek, for all E E [0, a). Then for each Vo > 0 and n E [Wf the class C(@, Vo, n) of 
all compact n-dimensional Riemannian manifolds with volume 5 VO and with + as a local 
geometric contractibility function contains: 

(i) finitely many simple homotopy types (all n), 
(ii) finitely many homeomorphism types ifn = 4, 

(iii) finitely many difleomorphism types ifn = 2 or n 2 5. 

Actually the growth condition on + is necessary in order to control the dimension of the 
limit spaces resulting from Gromov-Hausdorff convergence of a sequence of manifolds in 
C(@, V~J, n). As far as homeomorphism types are concerned, this condition can be removed 
[Fe]. Note moreover that infinite-dimensional limit spaces cannot occur in the presence 
of a lower bound on sectional curvature as for manifolds in R(n, r, D, V). Finiteness of 
the homeomorphism types cannot be proved in dimension n = 3 as long as the Poincart 
conjecture is not proved. If there were a fake three-sphere then one could prove [Fe] that 
a statement such as (ii) above is false for n = 3. Finally, the statement on finiteness of 
simple homotopy types, in any dimension, is particularly important for the applications in 
quantum gravity we discuss in the sequel. Roughly speaking, the notion of simple homotopy 
is a refinement of the notion of homotopy equivalence, and it may be thought of as an 
intermediate step between homotopy equivalence and homeomorphism. 
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The machinery needed to characterize the entropy function for geodesic ball coverings 
in four-dimensional manifolds of bounded geometry is now at hand. 

3. Topology and entropy of metric ball coverings 

The combinatorial structure associated with minimal geodesic ball coverings appears 
more complex than the combinatorial structure of dynamical triangulations. However, the 
counting of all possible distinct minimal geodesic ball coverings of given radius, on a 
manifold of bounded geometry, is more accessible than the counting of distinct dynamical 
triangulations. 

This fortunate situation arises because we can label the balls B, (pi) with their non-trivial 
fundamental group rrt (B, (pi); pi) (obviously, since we are interested to the distinct classes 
of covering, we need to factor out the trivial labeling associated with the centers Pi of the 
balls). Thus the counting problem we face is basically the enumeration of such inequivalent 
topological labelings of the balls of the covering. Such an enumeration is not yet very 
accessible. As it stands, there are constraints on the fundamental groups ~1 (B, (pi ); pi), 
expressed by Seifert-VanKampen’s theorem, which express the match between the in- 
tersection pattern of the balls and the homomorphisms ~1 (n;B,(pi); xn) + rrt (M; x0) 
associated with the injection of clusters of mutually intersecting balls into M (x0 being 
a base point in M f$ B,(pi)). Such difficulties can be circumvented by using as labels. 
rather than the fundamental groups themselves, a cohomology with local coefficients in 
representations of rrt (B,(pi); pi) into a Lie group G. Roughly speaking, this means that 
we are usingJut bundles corresponding to the representation 0 as non-trivial labels for the 
balls. 

This construction gives to the counting problem of inequivalent geodesic ball coverings 
an unexpected interdisciplinary flavor which blends in a nice way riemannian geometry (the 
metric properties of the balls), topology (the action of thefundamental group on homology), 
and representation theory (the structure of the space of inequivalent representation of the 
fundamental group of an n-dimensional manifold, n > 3), into a Lie group G. 

We wish to stress that a similar approach may be suitable also for a direct enumeration 
of dynamical triangulations since flat bundles on the simplexes (again associated with 
representations of the fundamental group of the underlying PL-manifold) do provide a 
natural topological labeling of the simplexes. It is true that such simplexes have no non- 
trivial topology (they are contractible) and that a flat bundle (associated with the given 
representation 0) over one simplex is isomorphic to the flat bundle over any other simplex. 
However, such isomorphism is not canonical, as is obviously shown by the fact that one 
may get a non-trivial flat bundle by gluing such local bundles if the underlying manifold has 
a non-trivial fundamental group (we wish to thank Ambjom and Durhuus for discussions 
that draw our attention to this further possibility). 
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3.1. Cohomology with local coeficients and representation spaces 

In order to describe either the topological aspects or the basic properties of the represen- 
tation spaces mentioned above and which play a prominent role into our entropy estimate, 
it will be convenient to recall some basic facts about cohomology with local coefficients. 
Details of the theory summarized here can be found in [DNF,RS,JW]. 

Let (M, (B,(pi)}) E R(n, r, D, V) be a manifold of bounded geometry endowed with 
a minimal geodesic ball covering, and thought of as a cellular or simplicial complex (for 
instance by associating with (M, {B,(pi))) the corresponding nerve N; in what follows 
we tacitly exploit the fact that a sufficiently fine minimal geodesic ball covering has the 
same homotopy type of the underlying manifold). We let nt (M) denote the fundamental 
group of (M, {B, (pi)}). Such nt (M) is finitely generated, and can be assumed to be finitely 
presented. 

Let fi + M denote the universal covering of M, on which rrt (M) acts by deck trans- 
formations. Let us introduce the homology complex C,(R) = @iEN Ci (A) where the 
chains in Ci(A) are of the form cj, y hjyaj(Bi) where kjjv are integers, a E ~1 (M), and 

6; are a set of chosen i-cells in A. This is tantamount to say that the chains Ci(fi> have 
coefficient in the group ring .&rt (M), i.e., in the set of all finite formal sums c nisi, tZi E Z, 
ai E nl (M), with the natural definition of addition and multiplication. 

Let 6’ : ~1 (M) -+ G, be a representation of nt (M) in a Lie group G whose Lie algebra 
g carries an Ad-invariant, symmetric, non-degenerate bilinear form (i.e., a metric). The 
representation 8 defines a flat bundle, that we denote by 8~. This bundle is costructed by 
exploiting the adjoint representation of G on its Lie algebra g, i.e., Ad : G + End(g), and 
by considering the action of rrt (M) on g generated by composing the adjoint action and the 
representation 8: 

Se = ti x ~/JU 8 LWW)>l-‘3 (19) 

where nt @ [Ad(O(.))]-’ acts, through xl(M), by deck transformations on I%? and by 
[Ad(O(.))]-’ on the Lie algebra g. More explicitly, if 31, 22 are cells in 2, and gt, g2 are 
elements of g, then 

(&,a> - (e27g2) (20) 

if and only if 

32 = &a (21) 

and 

g2 = W(Wd)l-'g~ (22) 

for some a E nl (M). 
In this way we can define a cellular chain complex C, (M, go) with coefficients in the flat 

bundle ~0. First we consider chains with coefficients in the Lie algebra g, viz., 
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c R/C?; (23) 

with gj E (1, and then quotient the resulting chain complex C(k) @ R by the action of 
TII @ [Ad(O(.))]-‘. This yields for an action of rrt (M) on the above chains expressed by 

a 

for any a E nl (M) (i.e., we are considering ~1 as a nt (M)-module). This action commutes 
with the boundary operator, and as a consequence of the definition of the flat bundle $10, the 
resulting homology H,(M, go) can be thought of as a homology with local coefficients in 
the flat bundle 00. By dualizing one defines the cohomology H*(M, go), which enjoys the 
usual properties of a cohomology theory. Sometimes, for ease of notation, we shall denote 
H,(M, Q) and H*(M, ~0) by H$(M) and H:(M), respectively. 

Let B,(ph) be the generic ball of the covering (M, (B,(pi)]). If we denote by 
@h : nl (B,(ph); ph) + nl (M; ph) the homomorphism induced by the obvious inclu- 
sion map, then together with 0, we may also consider the representations 

01, : ~I(&(P~); ml -+ ~I(M; PA) + G (25) 

obtained by composing 8 with the various homomorphisms & associated with the balls of 
the covering. 

Notice that since arbitrarily small metric balls in manifolds M E R(n, r, D. V) can be 
topologically rather complicated, it cannot be excluded a priori that the image & [nt (B, (pl,): 
ph)] in nt (M) (or more generally in the fundamental group of a larger, concentric ball) has 
an infinite number of generators. However, as follows from a result of Zhu [Zh], in order 
to avoid such troubles it is sufficient to choose the radius of the balls small enough. 

Theorem 3. There are constants Ro, to and C depending only on n, r, D, V, such that,for 
any manifold M E R(n, r, D, V), p E M, E 2 to, if i : B,(p) + BR(,~ (p) is the inclusion. 
then any subgroup K of & (~1 (B,(p))) satisjes order(K) 5 C. 

Thus in particular, there is no element of infinite order in 4; (rrt (B, (p))) whenever t 2 e(). 
According to this latter result, by chasing E > EO and by using the representations oh, we 

may define the cohomologies HLT (B, (ph)) with local coefficients in the corresponding flat 
bundles no I(& (ph)) defined over the balls B, (ph). As labels, these cohomology groups are 
easier to handle than the fundamental groups nt (B, (pi)). This is so because the constraints 
we have to implement on the intersections of the balls, relating [ H(T (B, (pi)))i to H,*(M), are 
simply obtained by iterating the cohomology long exact Mayer-ketoris sequence obtained 
from the short exact sequences connecting the cochains C:( B, (pi)), Cx(UB, (pi)), and 
C~~(nB, (pi)). For instance, given any two intersecting balls’B(pi) and B(ph), we get 

0 + C!:(B(pi) U B(P/I)) + C,:‘(B(pi)) @ CX(B(P~)) 

+ C!:‘(B(pi) n B(P~)) + 0, (26) 
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whose corresponding cohomology long exact sequence reads 

..’ + H/(B(f%) u B(Ph)) + H,J(B(Pi)) @ Hi(B(ph)) + 

+ ffi(B(pi) n B(Ph)) + H,j+‘(B(pi) U B(Ph)) + . . . (27) 

Similar expressions can be worked out for any cluster (B, (pi))i=l, z,.,, of intersecting 
geodesic balls (see Section 3.3) and they can be put at work for our counting purposes 
by introducing the Reidemeister torsion, a graded version of the absolute value of the de- 
terminant of an isomorphism of vector spaces. 

3.2. Torsions 

Let us start by recalling that by hypothesis TV is endowed with an Ad-invariant, symmet- 
ric, non-degenerate bilinear form (i.e., with a metric), thus we can introduce orthonormal 
bases, (Xk}k=l, ,__, dim(G), for the Lie algebra R. Since the adjoint representation is an or- 
thogonal representation of G on n, we can introduce a volume element on the cochain 
complex C*(M, a~), by exploiting such orthonormal bases: by identifying C’ (M, no) with 
a direct sum of a copy of 0 for each i-cell 6,! in &!I, we can take 6; @ Xk as an or- 

thonormal basis of C’(M, Q) and define the space of volume forms as the determinant line 
detlineJC*(M, se)1 = ni(detline(Ci(M, Q)()(-I)‘, where detlinelC’(M, ~0) 1 denotes the 
line of volume elements on C’ (M, go) generated by all possible choices of the orthonormal 
bases &f @ Xk. Explicitly, if on each C’(M, Q) we chose the volume forms ti, then the 
corresponding volume element is obtained by setting 

t(RQ) = fl(ti)(-“’ E detlineIC*(M,(le)I. (28) 

Let di : Cp + C:+, be the coboundary operator in C,;, and as usual let us denote by 
28 = ker(d), Bb = Im(d). From the short exact sequences 

O_,Z,~+C:;+B~+‘4l (29) 

and 

0 --f B; + 2; -+ H; + 0 

we respectively get that there are natural isomorphisms 

Adim ~6 N Adim B;+ I ~ ndim(C’)C; 

and 

(30) 

(31) 

Adim(B’)B; B Adim(H’)H; ~ ndim(Z’)Z;, 
(32) 

where Adim denotes the top-dimensional exterior power on the vector space considered 
(recall that if . . + Vi + Vi+1 + . . is a finite exact sequence, then there is a canonical 
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isomorphism @;_evenAdim(Vi)Vi = @i_oddAdim(V,) Vi). It follows that there is an isomor- 
phism 

ndim(B’)B; a ndim(H’)H; B ~dim(Efil)~;+l ~ ndim(C’)C;. 
(33) 

This isomorphism is explicitly realized by fixing orthonormal bases h(‘), and b(l) for H,( 

and B6, respectively. Thus, if we denote by Vi = A~ 
form in H,; (lifted to Ck), we can write 

dim(H)‘hg) the corresponding volume 

[,.,iim(a)‘h$)] ,, [,.$m(a)‘+‘dh$+t)] ,, [,;im(H)‘hy)] 

= fi(Ui)[A dim(C)‘&; B XJ (34) 

for some scalar ti (Vi) # 0. 
With these remarks out of the way, and setting, for notational convenience, cc; F 

~~~~~~~~~~ 8 Xk, we can define the Reidemeister torsion associated with the cochain com- 
plex C,: according to the following definition. 

Definition 6. For a given choice of volume elements u; in H,:, the torsion of the cochain 
complex CX is the volume element 

A”(M; p, u) = t(g~) = fl[ti(Ui)]‘-‘I’ E detlinelC*(M,(le)l. (35) 

Notice that we have selected a particular definition out of many naturally equivalent ones 
(see [RS] for a more detailed treatment). 

As the notation suggests, it is easily checked that As’(M; k, u) is independent of the 
particular choice of the bases {b)(‘) for the Bi. Moreover, if the complex C6 is acyclic then 
A!‘(M; p, u) is also independent from the choice of a volume element in Hct (recall that the 
cochain complex Ci is said to be acyclic if Hi = 0 for all i). 

Obviously, we may have worked as well in homology H$, by obtaining Ac’(M; I-(, u) as 
an element of detlineIC,(M, ~Q)I depending now on a choice of volume elements u’ in the 
homology groups Hf. 

It is important to stress that if the complex C*(M, a~) is not acyclic then A”(M: p, u) 
is not a scalar but a volume element in detlinel H*(M, go)1 under the natural identification 
between this latter line bundle and detlinelC* (M, a~) 1. 

The torsion is an interesting combinatorial invariant of a complex, since it is invariant 
under subdivision of M and it is deeply related to homotopy theory. In particular, given a 
homotopy equivalence f : (MI, J’VI ) + (Mz,Nz) between two cellular complexes, there 
is a correspondence between the flat bundles over MI and the flat bundles over M2 induced 
by the isomorphism rrt (Ml) + ~1 (M2) and by the representation 0 of such groups into 
the Lie group G. However, the corresponding torsions are not necessarily equal, this being 
the case if and only if h is (homotopic to) a Piecewise-Linear (PL) equivalence between the 
complexes in question. 
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Also notice that if the manifold M underlying the complex is an orientable, even- 
dimensional manifold without boundary and the cochain complex C,(M, go) is acyclic, 
then A”(M; p, u) = 1 (see e.g., [Ch]). Thus it would seem that calling into play such 
invariant for counting geodesic ball coverings over a four-dimensional manifold, is useless. 
However, there are three reasons which show that the role of torsion is not so trivial for 
our counting purposes. First, we shall deal with the torsions of the geodesic balls which 
are four-dimensional manifolds with a non-trivial three-dimensional boundary. Moreover, 
the complexes we need to use are not acyclic, and the behavior of volume elements u in 
cohomology will play a basic role. Finally, the fact that we are in dimension four will be 
imposed only in the final part of our paper, when estimating the dimension of the tangent 
space to the set of all conjugacy classes of representations of the fundamental group, (see 
below). In this connection, we wish to stress that the analysis which follows holds for any 
n-dimensional manifold M E R(n, r, D, V) with n > 2. 

We now examine the dependence of Afl(M; F, v) on the particular representation 
19 : ~1 (M) + G. To this end, let Hom(nt (M), G)/G denote the set of all conjugacy classes 
of representations of the fundamental group rrt (M) into the Lie group G. Notice that if 8 and 
FBF-’ are two conjugate representations of nt (M) in G, then through the map Ad(F) : 
g + g we get a natural isomorphism between the groups Hi(M, g) and Hi(M, FgF-*). 
Thus it follows that the torsion corresponding to the representation 8 and the torsion cor- 
responding to the conjugate representation FBF-' are equal, and AG(M; p, u) is actually 
well defined on the conjugacy class of representations [Q] E Hom(rrt (M), G)/G. 

When defining the Reidemeister torsion, one of the advantages of using the homology 
H,(M, g) with local coefficients in the bundle ~0 lies in the fact that the corresponding co- 
homology is strictly related to the structure of the representation space Hom(nt (M), G)/G. 
This point is quite important, since we are interested in understanding the dependence of 
A”(M; ,u, u) when deforming the particular representation 0 : nl (M) + G through a 
differentiable one-parameter family of representations 0, with 00 = 8 which are not tangent 
to the G-orbit of 8 E Hom(nt (M), G). 

To this end, let us rewrite, for t near 0, the given one-parameter family of representations 
19~ as [Go,Wa] 

0, = exp]tu(a) + O(t*)lQ(a), (36) 

where a E nt (M), and where u : XI (M) + g. In particular, given a and b in nt (M), if we 
differentiate the homomorphism condition or (ab) = 0, (a)&(b), we get that u actually is a 
one-cocycle of nt (M) with coefficients in the nt (M)-module go, viz., 

u(ab) = u(a) + ]Ad(B(a))lu(b). (37) 

Moreover, any u verifying the above cocycle condition leads to a map 0, : ~1 (M) + G 
which, to first order in t, satisfies the homomorphism condition. This remark implies that 
the (Zariski) tangent space to Hom(nt (M), G) at 8, can be identified with Z'(M, go). 

In a similar way, it can be shown that the tangent space to the Ad-orbit through f3 is 
B’(M, go). Thus, the (Zariski) tangent space to Hom(rrt (M), G)/G corresponding to the 
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conjugacy class of representations [0] is H’(M, go). And, as it is usual in deformation 
theory, this is the formal tangent space to the representation space. 

It must be emphasized that, in general, there are obstructions [Go] that do not al- 
low the identification between the Zariski tangent space with the actual tangent space to 
Hom(rrt (M), G)/G. Typically we have troubles in correspondence to reducible represen- 
tations. Since the tangent space to the isotropy group of the representation 8, is H"(M, (1~). 
it follows that H'(A4, go) # 0 precisely when there are reducible representations. Fur- 
ther obstruction to identifying H'(M, 4~) to the actual tangent space are in H2(M, Q). 
In deformation theory it is well known that this space is to contain the obstructions to 
extend a formal deformation to a finite deformation (i.e., in a language more familiar to 
relativists, H2(M, go) is associated to a linearization instability around the given repre- 
sentation in Hom(nt (M), G)/G). The triviality of this space at a (conjugacy class of a) 
representation 0 is a necessary condition for 0 to be a regular point of the representation 
space Hom(nt (M), G)/G, and for identifying H'(M, go) with To[Hom(nt (M), G)/Gl. 

We shall be ignoring the singularities produced by reducible representations by restricting 
our considerations to the set of irreducible representations S E Hom(rrt (M), G)/G, yet, in 
general we do not assume that H2(M, go) = 0. Not considering reducible representations 
is certainly not topologically justified in general, but is not yet clear how to circumvent 
the difficulties associated with them. Moreover, the results we obtain are well-defined in 
considerable generality and do not seem to suffer too much by such restrictions. 

Recall that Horn (nt (X), G)irr is a smooth analytic submanifold of Gm for some m. This 
provides S with an analytic structure, possibly outside some singular points. Let So denote 
the smooth locus of S, and let d be its dimension. 

To be definite, we set G = U(n). If we assume M to be oriented, the space So, regarded 
as the space of gauge equivalence classes of flat connections V on ~0, sits inside both M+ 
and M_, these two spaces being the moduli spaces of self-dual and antiself-dual irreducible 
instantons on M. 

Since 

dimM_ =dimG(bt -b+ - l), dimM+ = dimG(bt -h_ - l), (38) 

we get the inequalities 

d 5 dim G(bt - b+ - l), d (dimG(ht -b_ - 1): 

by summing the two inequalities we get 

(39) 

d 5 -$,dimGx(M). (40) 

We stress that d is the dimension of the representation variety in the neighborhood of smooth 
points. In general d is different from the Zariski dimension as computed by the cohomology 
H*(M, go). Let us define b(k) = dim Hk(M, go). Then b(0) = b(4) = 0 by irreducibility 
(and due to Poincare duality), while 6( 1) = b(3). Recall that the space H1 (M, go) can be 
thought of as the Zariski tangent space to S at [Q]; let us denote dz(8) = b( 1). So dz = d 
at a smooth point, while dz > d in general (see [GM]). Indeed a non-vanishing H2(M, ~0) 
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may represent an obstruction to the identification of the Zariski tangent space to the smooth 
tangent space at the point [(?I. 

The Zariski dimension dz may be computed by using the Atiyah-Singer index theorem. 
Let fiP(~) denote the space of all go-valued exterior p-forms on M. We may consider the 
elliptic complex 

whose cohomology is isomorphic to H*(M, 90). The index of the complex (41), ind = 
2dz(8) - b(2), may be computed explicitly getting ind = -dim GX (M), so that 

dz(B) = -$dim Gx(M) + ib(2), (42) 

where the B-dependence is implicit in the twisted Betti number b(2) = dim H2(M, go). 

4. Counting minimal coverings 

It is known that, under suitable hypotheses, the Reidemeister torsion can count closed 
(periodic) orbits of a flow on a (hyperbolic) riemannian manifold [RS]. Our purpose is to 
show that it can also count inequivalent geodesic ball coverings. 

This result is basically a consequence of a cardinality law satisfied by the torsion. 
Let A and B denote subcomplexes of the manifold M (as usual thought of as a cellu- 

lar or a simplicial complex) with M = A U B, and let us consider a representation 0 E 
Hom(nt (M), G). Let us assume that, for every i, volume elements /_I,i (A), /_Li (B), and Vi (A), 
vi (B) are chosen for the cochain complexes C6 (A), C6 (B), and the corresponding cohomol- 
ogy groups Hi (A), Hi(B), respectively. Let us further assume that such volume elements 
determine the’ volume elements on C:(M) and Hi (M). Corresponding to this choice of 
volumes let us denote by A”(MIA), A”(MIB), and A”(MIA fl B) the Reidemeister-Franz 
torsions associated with the subcomplexes A, B and A fl B respectively. Then 

An(H,zt, B)A~(MIA U B)A”(MIA fl B) = A”(MIA)A”(MI B), (43) 

where HA, B is the long exact cohomology sequence associated with the short exact sequence 
generated by the complexes C,T(A U B), C,;(A) @ C,*(B), and C,*(A n B) (the correction 
term Ag ( HA, B), associated with the twisted cohomology groups of the above three cochain 
complexes, disappears when the representation is acyclic). 

In order to exploit this cardinality law, let us consider all possible minimal geodesic 
c-ball coverings of a manifold of bounded geometry A4 E R(n, r, D, V) with a given 
filling function h = N!“(M). Given a sufficiently small E > 0 (in particular, smaller than 
the EO provided by Zhu’s theorem) and given a representation 0 : rrt (M) + G, and still 
denoting by 0 its restrictions to representations of the various nt (B, (pi)), we can consider 
the cohomologies with local coefficients in ~0, Hl(B,(pi)) for i = 1, . , h. We can use 
them as labels to distribute over the unlabeled balls [B, (pi)). Obviously, the coordinate 
labeling of the balls arising from the centers {pi) are to be factored out to the effect that 
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the balls (B, (pi)) are considered as a collection of h = N!“(M) empty boxes over which 
distribute the colors H$(B,(pi)). This must be done according to the constraint expressed 
by the Mayer-Vietoris sequence, associated with the intersection pattern of the covering, 
so as to reproduce H,C(UB,(pi)) 2 H,*(M). 

We formalize these remarks as follows. 
Let us assume that M E R(n, r, D, V) has diameter diam(M), (diam(M) r: D) and 

Ricci curvature Ric(M) > r. Let us consider the generic ball B, (p;) c M as a riemannian 
manifold with boundary, with metric tensorgt (pi). According to the coarse-grained point of 
view, we can assume that such geodesic ball is obtained, by arescaling, from a corresponding 
ball &(diam(M)) of radius diam(M) in a space form r;i(; of constant curvature r. Notice 
that different balls, say B,(pi) and B,(pk), with i # k, may arise from different space 
forms, resulting from different quotients of the simply connected space of dimension II 
and constant curvature r. Thus, for E sufficiently small, all balls are locally isometric, but 
possibly with different underlying topologies. 

In particular, as far as the metric properties are concerned, we assume that 

for every ball B,(pi) with c sufficiently small, and where $jr denotes the constant curva- 
ture metric on the space form 6lL. In terms of the filling function N!“(M) = h(c), it is 
straightforward to check that (44) can be equivalently rewritten as 

g,(p;) = p(M)-2’nh(t)-2/ngr, (45) 

where p(M) is a suitable function, depending on the parameters n, r, D, V, and on the 
actual geometry of the manifold M. 

For later use, it is also convenient to introduce the deformation parameter 

t(t) E ln[p(M)P2’“k(c)P2’“] (46) 

so that we can describe the resealing (44) as obtained through a smooth one-parameter 
family of conformal deformation 

g, (pi) = e’(‘)& (47) 

interpolating between .& (corresponding to I = 0) and the actual gt (pi). 
As far as topology is concerned, since the ball B, (pi) comes from the resealing of 

the reference ball fi, (diam(M)) in the space form fi:, we can write H: (B, (pi )) z 
H,T(&(diam(M))). Thus, with the balls B,(pl), B,(p2), . . . , B,(ph) we can associate the 
&homology groups H:(B,-(pi)) = H,*(&)(diam(M))), where a(i) labels the possibly 
inequivalent space forms iii,’ after which the balls (B, (pi)) are modeled. Notice that in 
general a(i) = u(k) for some pair i # k since the balls B, (pi) and B, (pk) may be modeled 
after the same space form fi:. 
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4.1. Scaling of torsions 

At this stage, there is an important point we wish to stress, namely that even if the twisted 
cohomology of each ball is not affected by the dilation of the ball, the corresponding volume 
elements in cohomology do change. In particular, let 

ITL4 (i) = pq (&)(diam(W)) (48) 

and 

i&(i) = u,(&)(diam(M))), (49) 

respectively, denote chosen (reference) volume elements for the cochain complex 
Cg (&~(diam(M))), and for the cohomology group Hz (&)(diam(M))) associated with 
the reference ball &(i)(diam(M)) corresponding to B, (pi). The effect, on the above refer- 
ence volumes, of scaling to c the radius of such ball, is described by the following lemma. 

Lemma 2. Let h = N!“(M) denote the value of the filling function as a function of E, 
then, as the radius of the reference ball varies from diam(M) to its actual value, the volume 
elements & (i) and i&(i) scale, as a function of h, according to 

vqo (*(E)) - 2 ;,; *(,)-(2/n)(4-n/2)b(~), 
Pq(i) 9 

(50) 

where the Betti number b(q) (in real singular homology) is the dimension of the cohomology 
group Hz (&)(diam(M))), and where .CL~ (i) and v9(i) respectively denote the volume 
elements for the cochain complex Cz (B, (pi)), and for the cohomology group Hz (B, (pi)) 
associated with the given ball B, (p;). 

‘This result provides a basic anomalous scaling relation satisfied by the ratio of the volume 
elements ii9 (i) and i&(i) as the radius, diam(M), of the generic reference geodesic ball is 
shrinked to E. 

To prove this lemma we first evaluate (d/dt)(u, (i)/p9 (i)), corresponding to the defor- 
mation (47), and then integrate (in t) the resulting expression between 0 and t. This can be 
done by an obvious extension of a construction discussed in the paper by Ray and Singer, 
[RS], whereby we proceed by considering the ratio of volume elements (u9 (i)/p9 (i)) as 
generated by a proper choice of a base in Cz (B, (pi)). 

ProoJ Let us denote by Do,k(B,(pi)) the space of Coo -differential forms on B,(pi) with 
values in the flat bundle 90 ) B, (pi), and which satisfy relative boundary conditions at each 
point of the boundary 8 B,(pi) (for a definition of such boundary conditions see Ray- 
Singer, ibidem p. 162). Corresponding quantities are similarly defined also for the reference 
ball &~(diam(M)). 

Let M(t) E 7-P be an orthonormal base of harmonic q-forms (with coefficients in go) 
in the space 7-P c D[(B, (pi)) of harmonic forms associated with the metric gr. Let 
A9 : 7-P + Cz(B,(pi)j denote the twisted deRham map 
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where cr is a q-cell in B,(pi), c E Q, and tr(., .) denotes the inner product in (1~. Since 
AY is an injective map of ‘W onto a linear space of cocycles representing H:(B, (pi)). 
we may use it as a part of a base for Cz (B, (pi)). Choose a base bq = (by] for the space 

of coboundaries Bz (B, (pi)) and for each by+’ take an element 67” of Cz (B, (JJ~ )) such 

that db!+’ = by+‘. Both b? and h?+’ 

(by 6”” 
J can be chosen independently of the metric g,. Thus 

Aq(hiy )) is a has: for C:(&(pi)) depending from the metric g, only through the 
J’J’ J 

base of harmonic forms hy . Following Ray-Singer, we denote by Dq the matrix providing 

the transformation from the base eJ? Xk of Cz (B, (p; )), generated by the cells of Cq (B, (p, )) 

and the orthonormal base Q, and the base (bj”, 67 “, Aq(hy )) introduced above. Thus 

f$$ = /detDql, 
4 

(52) 

The computation of the derivative of the determinant of Dq is carried out in Ray-Singer, 
[RS], where it is explicitly applied to the discussion of the behavior of the Reidemeister 
torsion as the metric varies (see their Theorem 7.6). Explicitly, we get 

(5.3) 

where b(q) is the Betti number (in real singular homology) of Hz(B,(pi)), and (., .)L~ 
denotes the global L*-inner product in the space of no-twisted harmonic q-forms ‘73, 
namely, for any two such formsf and g, 

where x denotes the Hodge-duality operator, and tr stands for the inner product in 0~. 
The global inner product (hy , dhq/dr), z is easily evaluated corresponding to the con- 

formal deformation (47). Indeed, we may rewrite (hg, dhq/dt),z as (hq, K’ d * hg/dr),z 
(see e.g., Proposition 6.4 of Ray-Singer [RS]). A straightforward computation shows that 
the derivative of the Hodge map *r, associated to the t-flow of metrics g,, defined by (47), 
is provided by 

d*r &J- = [4 - $1 *.f 

for any given q-formf with values in the flat bundle OH. 
Thus 

(56) 
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since the basis hy is orthonormal. 
Introducing this latter expression in (53) we get 

dln- 
vq(i) 

dt puq(i) 
= b(q)]q - $1 (57) 

We integrate (57) with the initial condition 

(58) 

where ijq (i) and jiq (i) respectively refer to the original unscaled measures on the cochain 
complex Cz(&(i)(diam(M))) and on the cohomology group Hz(&)(diam(M))). 

With this initial condition, and if we take into account the explicit expression oft in terms 
of the filling function ;i we get 

J@&(h)) = _q 
Pq (i) 

~,p-‘:“~-2/“]iv-n/2)bC,) 
4 

Thus, we eventually get 

(59) 

where we have traded the term [p-2/“](q-“/2)h(q) f or a redefinition of the given original 
unscaled measures Vq (i) and jiq (i). This completes the proof of Lemma 2. 0 

Corresponding to this resealing of volume elements, we can evaluate the relation between 
Reidemeister torsion, for the generic geodesic ball BE (pi), as expressed in terms of the scaled 
uq (i), ~~ (i) and unscaled measures Vq (i), pq (i). A straightforward computation yields 

A”(B,(pi); p(i), v(i)) = A”(B,(pi); b(i), ~(i))h-‘2’n’Cy’-“4’qn’2’b’q’ (61) 

Notice that the exponent of k., viz., c, (- l)q( 1 - 2q/n)b(q) vanishes, by Poincare duality, 
if the ball is compact and without boundary (in particular it vanishes when t + diam(M), 
namely when the ball B,(pi) is expanded so as to cover the whole manifold M). In this 
sense, it is a measure of the presence of the boundary. If we set 

a(i) = [dim(G)]-’ x(-l)qqb(q) 
4 

and recall that c,(-l)qb(q) = dim(G)x(i), where x(i) = x(BE(pi)) 
Poincare characteristic of the given ball B,(pi), then we can rewrite (61) as 

Aa(Bc(pi); F(i), v(i)) = A”(B,(pi); b(i), ,(i))hdim(G)(2/“)[(n/2)X(i)- 

4.2. Distinct coverings in a given representation of nl (M) 

(62) 

is the Euler- 

a(i)1 (63) 

With these preliminary remarks out of the way, our strategy is to construct, out of the 
sequence of h balls {B, (pi)), each endowed with the metric gl (pi), all possible geodesic 
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ball coverings providing and ??-Hausdorff approximation to the original M. In order to do 
so, we need to consider explicitly the generalized Meyer-Vietoris sequence associated with 
the covering (B, (pi)) (see [BT] for details). To simplify the notation, we shall denote by 
B(i), with i = 1, . . . , h, the generic open ball B, (pi). Similarly, we denote the pairwise in- 
tersections B(i) fl B(j) by B(i, j), triple intersections B(i) fl B(j) fl B(k) by B(i, j, k), and 
so on. Recall that for a manifold of bounded geometry, the number of mutually intersecting 
balls is bounded above by a constant d, depending on the parameters n, r, D character- 
izing R(n, r. D, V), but otherwise independent from E. Thus, independently from E, the 
largest cluster of mutually intersecting balls which can occur for any M E R(n, r, D. V) 
is B(il,iz, . . . , id). 

As usual [BT], we denote by 8, the inclusion map which ignores the i, open ball B(i,) 
in the generic cluster B(il, . . . , i,, . . .) . For instance 

& : u B(i,j,k) -+ B(j,k). (64) 

By considering the cochain complexes C,*(B(i, j, . . .)) associated with the intersections 

B(i, j, . . .I, one can consider the restriction map 6, defined by the image of the cocycles 
under the pullback map induced by the inclusion a,. For instance, corresponding to the 
above inclusion we get 

Thus, associated with any given minimal geodesic ball covering (B(i)], there is a sequence 
of inclusions relating the intersections B(i, j, k, . . .) with the packing ui B(i) 

. + LI B(i, j, k) + Ll B(i,.d + Ll B(i) -+ M 
icjck i<j i 

(66) 

and a corresponding sequence of restrictions 

C;(M) + n Cg(B(i)) + fl C,*(B(i, j)) + fl CX(B(i, j, k)) + . . . (67) 
i i<j i<j<k 

If in this latter sequence we replace the restriction maps with the corresponding difference 
operator 6 : nC,I(B(il, . . ..i.)) + nC,i(B(il, . . ..i.,i,)) defined by the alternating 
difference 61 - S2 +. . . (+/-)6, -/+ 6,, then we get the generalized Mayer-Vietoris exact 
sequence 

O+ C,:(M) -+ nC,*(B(i)) -+ nCi(B(i.j)) + n C,T(B(i,j,k)) -+ . . . 
i icj i<j<k 

(68) 

The sequences (66)-(68) intermingle the combinatorics of the geodesic ball packings 
and of the corresponding coverings with the topology of the underlying manifold M. 

The function that associates with a manifold of bounded geometry the number of distinct 
geodesic ball packings extend continuously (in the Gromov-Hausdorff topology) through 
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the Mayer-Vietoris sequence (68). Thus, our strategy will be to enumerate all possible 
4 e-geodesic ball packings, modulo a permutation of their centers (pi ), and then extend by 
continuity the resulting counting function to the corresponding coverings. 

In order to view a manifold of given fundamental group ~1 (M) as generated by packing 
and gluing metric balls we must choose base-points and arcs connecting these points. Only in 
this way we will be able to consider curves in the balls either as elements of the fundamental 
groups of the balls themselves or as elements of the fundamental group of the manifold M. 
So we choose as basepoints in the balls their respective h centers pt, ~2, . , ph. One of 
these centers (say pt) is then chosen as a basepoint in M. Next we need to choose arcs Lij 
connecting the points pi and pj. This amounts in giving a reference intersection pattern for 

the geodesic ball coverings, namely a reference one-skeleton fJ’)(M; ref). If Li is a path 
in M, corresponding to a path in the graph f>t’(M; ref), connecting p1 with pi, and Ci 
is a curve in the ball B(i), then C; = Li’ * Ci * Li’ is an equivalence class in xl(M). 
In this connection, it is particularly helpful that isomorphic (in the combinatorial sense) 
one-skeleton graphs correspond to manifolds with a same homotopy type. 

The remarks above imply that in order to enumerate all possible coverings, we need to 
start by giving a reference covering Cov,,r 

. . + I_I B(i,j,k) + LI Wi,j) + LI B(i) + M (69) 
i<jtk i-cj i 

specifying the homotopy type of the manifolds M in R(n, r, D, V) we are interested in. 
We wish to stress that this reference covering is common to many topologically distinct 
manifolds, for we are not specifying a priori the topology of each ball. Recall that according 
to Gromov’s coarse grained point of view, two manifolds Mt and M2 in R(n, r, D, V), 
having the same E-geodesic ball covering, define an c-Hausdorlf approximation of a same 
manifold, without necessarily being homeomorphic to each other. For E small enough, 
such approximating manifolds only share the homotopy type, (and hence have isomorphic 
fundamental groups). Thus the reference covering Cov,r, (69), may be considered as a 
bookeeping device for fixing the homotopy type (and in particular the fundamental group) 
of the class of manifolds we are intersted in. 

From a combinatorial point of view, Cov,r labels the intersection pattern of centers {pi } 
of the balls in a given order. The strategy is to determine the number of different ways of 
associating with such centers the actual balls {B,, H:(&)] after which the geodesic balls 
are modeled, i.e., we have to fill the reference balls B(i) with some topology. Any two such 
correspondence between centers and model balls are considered equivalent if they can be 
obtained one from the other through the action of the symmetric group acting on the centers. 
In this way we avoid to count as distinct the relabelings of the centers of a same pattern of 
model balls. We prove that in this way, we can obtain all possible coverings. 

Let Perm denote the group of permutations of the collection of balls (B(i)} E Covref, 
namely the symmetric group Sk acting on the k centers (pl, . . . , pi). Also let {C,*(a)), 
witha = 1,2, _. . , ICK (, denote the set of possible cochain groups for the model balls (fi,), 
where 1 C: 1 denotes the cardinality of (CR* (a)). 
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We are tacitly assuming that different balls may have the same C,;(a). But actually, in 
the final result we allow for (CX 1 -+ (n + 1)h. As often emphasized, iC,*(o)) is the typical 
set of colors for the balls B(i)’ coming from the model balls { &) in the space forms MA. 
Similarly, we denote by {C,*(a, b)} c (C,*(a)) the set of possible cochain groups for the 
pairwise intersections B(i, j); by (CX (a, d, c)) C (C,:(a)} the possible cochain groups for 
the triplewise intersections B(i, j, k), etc. All such groups are assumed to be related by a 
sequence of restrictions analogous to (67) namely 

(70) 

Remark 2. It is important to stress that even if the balls (and their intersections) are topo- 
logically trivial (namely if they are contractible) the labels associated with the C:(u) are 
non-trivial. Indeed, for a contractible ball we get 

fquw) 2 Rs, 9 (71) 

while the remaining twisted cohomology groups all vanish. Thus in this case, the label is 
provided by local flat bundles over B(i) associated with the representation 0. Since there 
is no canonical isomorphism between these flat bundles over the balls B(i), we have to 
assume that the labels Cz (a) are distinct. 

Let us consider the set of all functions, f = <f(i), f(ij), f(ij...)T .I, compatible with the 
morphisms of the two complexes (66) and (70), where 

f(il...i,) : {B(il, . . .ip)) + {C,T(Ql, . . . tap)1 (72) 

is the function which associates with the generic mutual intersection of balls B(i, j, . .) the 
corresponding cochain group C,*(B(i, j, . .)) = C,:(ui, ~2, . . .) out of the possible ones 

(C&b, . .)I. 
Let cr E Perm a permutation acting on the balls (B(i)}. Any such ~7 can be made to act 

on the set of function f, by defining 

(o*f)(B(il, . . .,ik)) = f(aWi~, . . .,ik)) (73) 

for any 1 ( k 5 d, and where 

aB(ij, . . , ik) = alI fl . ’ . n oB(ik). (74) 

Thus, the equivalence class of configurations f under the action of Perm is well defined; it 
is the Combinatorial Pattern of the geodesic ball covering f (Cov,r) in the representa- 
tion [0]. 

Notice that if we assume that the reference covering Cov,r is explicitly realized on a 
given manifold M, then the orbit of the map 

(75) 
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which allocates the balls {B(i)) of the reference covering on their centers, corresponds to 
the given reference covering Cov,,f and all isomorphic coverings that can be obtained from 
the reference covering by relabeling the centers of the balls. Not all possible maps fc;, . ...,,) 

belong to the orbit of fglp, and in general we can prove the following theorem. 

Theorem 4. In a given conjugacy class of (irreducible) representations [Q] E 
Hom(nl (M), G)/G, and given a set of possible colors (70), any two minimal geodesic 
e-ball coverings (66) are distinct if and only if they correspond to distinct orbits of the 
permutation group Perm acting on the set ofallfunctions f = (f(i), fc;j), f(;i...,, . . .). 

Pro05 Let M E R(n, r, D, V) be a given manifold Let Covl and Cov2 be e-geodesic ball 
coverings of M having the same number of balls. They are isomorphic if there is an injective 
mapping h of the balls of Covl onto those of Cov2 which satisfies the following condition. 
(i) Any two distinct balls Ba and Bg of COVI mutually intersect each other if and only if 

their images h( B,) and h( BP) mutually intersects each other in Cov2. 
This condition is extended to the mutual intersection of any number (5 d), of balls, and 

can be rephrased in terms of the nerves associated with the coverings COVI and Cov2, by 
saying that vertices ofN(Covl ) define a k-simplex if and only if their images under h define 
a k-simplex in M(Cov2), (see Section 2.1). 

Let f (‘) = (f(i), f(ij)7 f(ij...), . . . I(‘) and f (2) G <f(i), f(ij), f(ij...), . .)(2) be two func- 
tions which are in distinct orbits of the symmetric group. Let us assume that they give rise 
to two isomorphic geodesic ball coverings according to the definition recalled above. Then 
there is a mapping h of the balls of the covering f (‘)(Cov,,f) onto the balls of the cover- 
ing f (2)(Cov,f) such that the corresponding nerves are isomorphic. We can use the map 
h to relabel the vertices of f (2)(Cov,f). Thus f (2) and f(I) do necessarily belong to the 
same orbit of the symmetric group, and we get a contradiction. Conversely, let us assume 
that f (l) E (f(i)3 f(ij), f(ij...), f . .)(‘) and fc2) z (f(i), f(ij), f(;j...), . . .) (2) are in the same 
orbit of the symmetric group. Then the permutation which maps f (‘) to f (2) is an injective 
mapping of the covering defined by f(l) onto the covering defined by f (2), and the two 
coverings are isomorphic. 

Since the functions f must be compatible with the morphisms of the complexes (66) and 
(70), and the action of the symmetric group extends naturally through (66), there is no need 
to consider all functions f(i), f(ij), f(ij...) as varying independently. To generate a geodesic 
ball covering it suffices to assign the set of all functions, f = (f(i)}, 

f(i) : {B(i)1 + tC,*(a)l, (76) 

which associate with the generic ball B(i) the corresponding cochain group C,*(B(i)) = 
C,*(a) out of the possible ones { CG (a)]. The remaining functions f(ij,,.) are then determined 
b; the given reference pattern (6&). This circumstance simply corresponds to the fact that 
the assignement of a geodesic ball packing, i.e., of f(i), characterizes a corresponding 
geodesic ball covering (viz., the one obtained by doubling the radius of the balls) and if we 
estimate the number of distinct geodesic ball packings we can also estimate the number of 
the corresponding geodesic ball coverings. 
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Thus we need to count the number of the distinct patterns associated with the orbits 
of f(i) under the symmetric group. This can be accomplished through the use of Polya’s 
enumeration theorem [Bo]. 

4.3. Entropyfilnction in a given representation of ~1 (M) 

Let us write the generic permutation (T E Pet-m as a product of disjoint cyclic permutations 
acting on the set of balls {B(i)}. Denote by jk (a) the number of cyclic permutations (cycles) 
of cr of length k. Recall that the cycle sum of Perm is the polynomial with integer coefficients 
in the indeterminates (rk} = tt , t?, . , rh given by 

C(Perm:tt, . . ..th) = C fitj(u). 
uePerm k= I 

(77) 

Since Perm is in our case the symmetric group Si. acting on h objects, we get 

CCL%; t1, . ,fh) = c A! 

“,“=, ,,,!w-~~:*~ (78) 

where the summation is over all partitions ji + 2 j2 + . . + hji = h. 
In order to apply Polya’s theorem we need to introduce a function zu : (C;(a)) + 

E where E is an arbitrary commutative ring. Such w is meant to provide the weight of 
the possible twisted cochain groups {C,~(a)). In this way, one can define the weight of a 
configuration f of such groups over the packing as 

w(f) = n w(f(B(i))). (79) 

Any two configurations that are equivalent under the action of Perm = Sk have the same 
weight, and the weight of the pattern associated with the Sh-orbit Oh of a f is just w(c3h) = 
w( ,f). By summing over all distinct orbits Uh, with h = 1, ,I one gets the pattern sum 

s = 2 W(c3hh (80) 
h=l 

where c3t,O2, . . ,CJ are the distinct patterns of the geodesic ball packings we wish to 
enumerate. 

Pblya’s enumeration theorem (see e.g., [Bo]) relates the above pattern sum to the cycle 
sum, namely 

[PermlS = C(Perm; st , . . . , sk), (81) 

where IPerm is the order of the group of permutations, Perm, considered (thus, IPerm = k! 
in our case) and Sk is the kth figure sum 

Sk = c (w(Cz(a)>)k, 
N 

where the sum extends to all cochain complexes in (C,;(a)]. 

(82) 
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Given the generic cochain C,*(a), a natural candidate for the weight w(C,*(a)) is its 
corresponding torsion 

- - 
w(C;(a, /-L, v)) = A%), (83) 

where AR(a) is the Reidemeister-Franz torsion of the cochain complex C;(a) evaluated 
with respect to the unscaled reference volume elements b and V induced by those for the 
cochain complex Cz (a) and the corresponding cohomology H$T (a). 

It is preferable to have these weights expressed in terms of the reference volumes p and 
V rather than the c-scaled volume elements p and u, otherwise, according to (63), we would 

get 

w(C*(u. p ,,)) = A”(u. p ~)hdim(G)(2/“)[(“/2)X(C,*(a))-cY(CK(a))J 
n ” , 9 

where we have set 

(84) 

with x (CX (a)) and b(q; a) respectively denoting the Euler-Poincare characteristic and the 
q th Betti number of Cz (a). 

Such a choice for the weight enhances the effect of the boundaries of the balls as follows 
from the presence of the anomalous scaling term 

dim(G)(2/n)[~nx(C,*(a)) - dCg(a))l. (86) 

The entropic contribution of these boundaries to the enumeration of packings can be easily 
seen to be 

(87) 

thus, it is of a factorial nature, and as such quite disturbing in controlling the thermodynamic 
limit of the theory. As stressed, its origin lies in the fact that by using as reference measures 
the c-scaled F and v, we are implicitly providing an intrinsic topological labeling also for 
the boundaries of the balls (indeed (86) would vanish, by Poincare duality, if the ball were 
closed and without boundary). Such boundary terms are not relevant if we are intersted in 
coverings, and thus the weight w (C,*(u; k, v)) is too detailed for our enumerative purposes. 
The proper choice is rather u~(Cg(u; p, V)). 

The remarks abcve are an example of the typical strategy inherent in Polya’s theorem. 
Indeed, it is exactly the proper choice of the weight to be associated with the colors, that 
allows one to select the details of interest in the patterns we wish to enumerate. 

With these remarks out of the way, it can be easily verified that the weight of a con- 
figuration f of the cochain complexes {C,*(u)) over the packing (B(i)) is nothing but 
the Reidemeister torsion, in the given representation [O] and with respect to the product 

measures ni pi, ni Vi, of the disjoint union uj(B(i) f C,:(u)) (this is an immediate 
. application of the cardinality law (43) for the torsion). 
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We can write down the generic kth figure sum (82) and a standard application of Polya’s 
theorem would provide, at least in line of principle, the required enumeration of the dis- 
tinct coverings. However, for large values of the filling function h explicit expressions are 
extremely difficult to obtain. Even for small values of h the evaluation of the cycle sum 
corresponding to the kth figure sums is unwieldy owing to the non-trivial structure of the 
weight we are using. 

Nonetheless, a useful estimate of the number of distinct covering can be easily extracted 
from Polya’s theorem. This estimate will be sufficient to characterize in a geometrically 
significant way the rate of growth, with h, of the number of geodesic ball packings. 

According to Polya’s theorem, we get that 

c AR(Oh) 
h=l 

1 c, t4Cff(a)) J’(n) 
IYE c ( ) .( 

. c, wp)P JA(rr) 

JI (a)!. . . JA(cT)! 1 ;c ~ 
1 ’ 

ew 
where the summation is over all partitions Jt (a) + 2&(a) + . . . + hJh(a) = h. 

Since we are interested in the large h behavior of the above expression, it is convenient 
to rewrite the figure sums in (88) in a slightly different way. 

Let ti(CX(a)) denote the value of w(CX(a)) corresponding to which the torsion 
A!l(C,*(a)) attains its maximum over the set of possible colors [CX(u)), viz., 

tZ,(Cjr) = rn,“x [ Acl(C,~(u))) . 

Thus, we can write 

(89) 

Sk = c wk(C&G p, u>) 5 IC;IIZlkKp; I-L? u)), (90) 
0 

where 1 C,; 1 denotes the number of inequivalent cochain groups Cz (a) providing the possible 
set of colbrs of the balls B(i). 

The generating identity determining the cycle sum for the symmetric group is 

(91) 

where u is a generic indeterminate. For notational convenience, let us set 

t = ziqp; p, u)). (92) 

If we replace in (91) tk with the bound (90) for the figure sum Sk, viz., 

tk = lc,;lrk (93) 

then, in the sense of generating functions, we get 
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cc 

c C(t1,t2, . 

j=O 

. . , tj)uj/j! = exp [ IC,*l(ur + (~t)~/2 + (~4r)~/3 + . .)I 

= (1 - +ca, (94) 

Thus 

COl,f2, . . ..td = 
clq +A - l)!& 

Wn*l - I)! 
(95) 

and according to Polya’s enumeration theorem we get that the pattern sum over all distinct 
orbits of the permutation group, acting on the {C,*(a, b, . . .)) colored covering (66), is 
bounded by 

1 

c 
h=l 

(96) 

Notice that the combinatorial factor in the above expression is exactly the number of h- 
combinations with repetition of /CX 1 distinct objects. 

The color of each ball B(i) has a degeneracy (the possible shades) equal to n + 1, where n 

is the dimension of the manifold M. Indeed, since each ball B(i) is topologically non-trivial, 
its cohomology (with local coefficients) H: is generated by n + 1, a priori distinct, groups 
Hi, with 1 = 0, 1, . , n. Since there are h, a priori distinct, balls we shall set in general 

lK;l = (n + 1v.; 

with this assumption, and for h > > 1 we get, by applying Stirling’s formula 

(97) 

(98) 

It follows from the above results that the asymptotics of the counting function, enumer- 
ating the distinct geodesic ball packings with a torsion AC’(&) in a given representation 
[O], and with respect to the product measures ni ,$, ni Vi, can be read off from the bound 

h=l 

Explicitly, let Bpack(Ag; ;C) denote the number of distinct geodesic ball packings with h 
balls and with Reidemeister torsion A”. In terms of Bpack(AQ; h) we can write 

k d”(c?h) = c &&(A’; k)A” 
h=l A 

(100) 

Since the bound (99) is a fortiori true for each separate term appearing in the sum, we get an 
estimate of the asymptotics of the number of distinct geodesic ball packings with torsion A” 
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f$ack(A”; A) 

Rather unexpectedly, this asymptotics is of an exponential nature, whereas one would 
have guessed that (allowing for repetitions) there would be a factorial number of ways 
of distributing (n + 1)h distinct labels (the cohomologies H,:) over L WZ~Q balls. This 
latter is obviously a correct guess but it does not take into account the action of the 
symmetric group on the coordinate labelings of the centers of the balls. Since we are 
interested in distinct (under relabelings) packings, we have to factor out this action. And 
this reduction is responsible of the transition from a factorial to an exponential growth in 
(101). 

Another relevant aspect of (101) lies in its dependence from the Reidemeister torsion. At 
this stage, this is simply a consequence of the choice we made for the weight in applying 
Polya’s theorem. And, had we chosen w(C,y(a)) = 1 we would have obtained in place of 
( 10 1) the estimate 

(102) 

This gives a bound to all possible c-geodesic ball packings on a manifold of given funda- 
mental group nt (M), which is consistent with the data coming from numerical simulations, 
and in dimension n = 2 is in remarkable agreement with the known analytical estimates. 
[BIZ]. 

The use of the torsion as weight allows for a finer bound, where we can distinguish be- 
tween different packings (each packing being labeled by the corresponding torsion 
ACx(c3h; t%, V)). For packings this resolution is not particularly significant, since the tor- 
sion of a packing does not have any distinguished topological meaning. However, as we 
pass from the geodesic ball packing Hi B(i, it) to the corresponding covering Ui B(i, t ), 
the torsion, now evaluated for the covering, gets identified with the torsion of the underlying 
manifold. Correspondingly, the bound ( 101) can be extended by continuity to geodesic ball 
coverings too. The explicit passage from packings to the corresponding coverings is an 
elementary applications of Gromov’s compactness for the space R(n, r, D, V), and we get 
the following proposition. 

Proposition 2. Let M E ‘R(n, r. D, V) denote a mantfold of bounded geometry with fun- 
damental group nl (M), and let 0 : ~1 (M) + G be an irreducible representation of rr) (M) 
into a (semi-simple) Lie group G. For E > 0 su$iciently small. let ( BI\,I (pi, c)) denote the 
generic minimal geodesic ball covering of M, whose balls are labeled by the flat bundles 
9~ ( BM (pi, t )) associated with the restrictions of t3 to BM (pi, 6). If we denote by N:(j) (M) = 
h the$lling,function of the covering, then, for h > > 1, the number, Bcov(A!‘; A). of such 
distinct geodesic ball coverings is bounded above by 
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(103) 

where An(M) is the Reidemeister torsion of M in the representation 8. 

ProojI From a combinatorial point of view, the injection of the possible it-geodesic ball 
packings ui (B(i)} into the possible c-geodesic ball coverings, Ui (B(i)], is a continuous 
map in the Gromov-Hausdorff topology. It is also consistent with the generalized Meyer- 
Vietoris sequence (68) associated with the possible coverings. Thus, corresponding to this 
injection the torsions, An(Oh), of the possible distinct &-geodesic ball packings, naturally 
extend to the torsion of the underlying coverings Ui (B(i)}. For a given h, the bound (99) 
depends explicitly on the topology of the packing only through these torsions, and the set 
of possible packings of a manifold of bounded geometry is compact (it is a finite set) in 
the Gromov-Hausdorff topology. It immediately follows, by Tiezte extension theorem, that 
(99) has a continuous extension to the counting of all inequivalent geodesic ball coverings 
of the manifold M E R(n, r, D, V) in the given representation [e]. 0 

Notice that A(l(M) plays in (103) the role of a normalization factor. Since there are h 
balls B(i) in M, and since the Reidemeister torsion is multiplicative, &/A(l(M) would be 
of the order of 1 if the balls were disjoint (recall that 8 is the typical torsion of the generic 
ball). Thus, roughly speaking, the torsion depending factor in (103) is a measure of the 
gluing of the balls of the covering. 

The dependence from the representation 0 in (103) can be made more explicit. To this 
end, let us assume that each ball is contractible; then from the cardinality formula for the 
torsion we get that 

8 = An(B(i>) = dm, (104) 

where Ae(S’) is the torsion of the circle S’ in the given representation 0. Let A(B) be the 
holonomy of a generator of rr’ (S’) in the given representation 0. If the matrix I - A(B) is 
invertible, then the flat bundle ~0, restricted to the generic ball B(i), is acyclic and 

AR(S’) = 1 det(Z - A(O))l. (105) 

Thus (103) can be written explicitly as 

1 n+2 
’ &GAQ(M) n + 1 C- 1 :: I$ I det(Z - A(e))]l’h-‘/2 (1 + o(~-~/~)) . 

(106) 
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5. Summing over coverings and the volume of the space of riemannian structures 

The dependence from the representation f3 in (103) and (106) comes from the fact that we 
are counting distinct coverings on a manifold M endowed with a given flat bundle Q. We can 
interpret this in an interesting way by saying that (103) is a functional associating to an equiv- 
alence class of representations [0] (or which is the same, to each flat bundle or to each gauge 
equivalence class of flat connections) a statistical weight which in a sense is counting the 
inequivalent riemannian structures M can carry. As a matter of fact, from a geometric point 
of view, the term iZ*/Ae(M) is related to a measure density on the representation variety 
Hom(nt (M), G)/ G, and as such it can be used to define an integration on Horn(n) (M), G)/ 
G. The total measure on Hom(rri (M), G)/ G defined by (103) is the the actual entropy func- 
tion for geodesic ball coverings. By summing this entropy function over all L we get an 
expression that can be considered as providing the measure of the set of all riemannian 
structures of arbitrary volume and of given fundamental group. 

In order to elaborate on this point, let us recall that the torsion A” is a generalized 
volume element in detline(FZz). Similarly, we may consider the product 6’ as an element 
of detline( H,:) obtained by pull-back from @H,T (B(i)) to HcT (M) according to the Mayer- 
Vietoris sequence (68). Thus, the ratio 5’/AQ can be thought of as a density to be integrated 
over the representation variety. 

As recalled in Section 3.2 (see also [JW]) the choice of a representation 8 in the equiva- 
lence class [0] identifies the twisted cohomology group H,; with the Zariski tangent space 
at [@I to the representation variety Hom(nt (M), G)/G. Thus, given a choice of a volume 
element u in HL: we may think of (iCh/Ae)u as providing a measure on (the dense open 
set of irreducible representations in ) Hom(nt (M), G)/G. This construction is actually 
very delicate since the representation variety Hom(nt (M), G)/G is not smooth, and con- 
sequently the density bundle may be ill defined. The singularities come from the reducible 
representations, and given a representation 8, the tangent space to the isotropy group of such 
0 is Ht (again see Section 3.2 or [JW]). As already stressed we shall be ignoring the singu- 
larities of the representation variety in the general setting. One can make an exception for 
the two-dimensional case, where the structure of Hom(rrt (M), G)/G is better understood. 

Given the reference measure u on Hom(nt (M), G)/G, the associated measure (ih’/A”)v 
is ill behaved as h + 00. In order to take care of this problem, we introduce as a damping 
term the Gibbs factor exp[-aL] which provides a discretized version of the (exponential 
of the) volume of the manifold M, with a the (bare) cosmological constant. In this way 
we have arrived at the natural setting for providing a measure on the space of riemannian 
structures of given fundamental group induced by the counting function Bc~~(A!~: 1): 

Meas(RIEM(M), ~1 (M)) 

Bc~~(A”, h) exp[-ah] dv([01). (107) 

This volume (107) of the corresponding space of riemannian structures depend on the 
bare cosmological constant, here in the role of a chemical potential controlling the average 
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number of geodesic balls. It is related to the partition function, in the ), + 00 limit, 
of a discrete model of quantum gravity based on geodesic ball coverings (at least when 
the action can be reduced to the cosmological term). All this is strongly reminiscent of 
the interplay between two-dimensional quantum Yang-Mills theory and the intersection 
parings on moduli spaces of flat connections on a two-dimensional surface [Wt2]. In this 
connection it is worth stressing that the representation variety Hom(nt (M), G)/G has 
a more direct geometrical meaning that evidentiates better the connection with quantum 
gravity rather than the usual interpretation as a moduli space for flat connection. In dimension 
two is known that, by taking G z PSL(2, R), the representation variety has a connected 
component homeomorphic to the Teichmiiller space of the surface. Analogous Teichmiiller 
components can be characterized for other choices of the group G (see e.g., [Go,Hi]) and 
thus by considering the representation variety in place of the moduli space of complex 
structure as is the case for 2D-gravity, implies that we are considering an extension of 2D- 
gravity. In dimension larger than two, the representation variety Hom(nt (M), G)/G can 
be interpreted as the deformation space of local G-structures on M [Go]. For instance, if 
G = O(n) is the orthogonal group, then Hom(nt (M), O(n))/O(n) is the moduli space of 
locally flat Euclidean structures on M. 

This last remark thus explains why it is natural to sum over Hom(nt (M), G)/G. Indeed, 
since counting coverings can be thought of as an approximation to compute integrals over the 
space of riemannian structure, the sum over the representation variety Hom(nt (M), G)/G is 
needed in order to take into account the size of the set of metrics realizing such G-structures 
in the space of all riemannian structure (of bounded geometry). 

5.1. Bounds on the critical exponents 

The relation between the counting function Bcov (A” ; h) and the measures on the repre- 
sentations variety Hom(nt (M), G)/G allows us to provide bounds on the critical exponents 
associated with Bcov(A”; h) by (formal) saddle-point estimation. A sounder application of 
this technique would require a deeper discussion of the properties of the measure v([Q]) 
on Hom(nt (M), G)/G, in particular one needs to understand in detail the extension of a 
measure from the set of irreducible representations to the reducible ones corresponding to 
the singular points of the representation variety. We are not able to address this interesting 
question here. Nevertheless, we venture since the results obtained may be helpful. Let us 
fix our attention on the two-dimensional case first. 

To begin with, let us be more specific on the choice of the group G into which we 
are considering representations of fst (M). A natural example is provided by G = U( 1). 
In such a case, the U(1) conjugation action on Hom(nt(M), U(l))/U(l) is trivial, and 
Hom(rrt (M), U( 1)) is just the Jacobian variety of the riemannian surface generated by 
the covering considered. Moreover, regardless of the complex structure, one has that topo- 
logically, Hom(nt(M), U(1)) z 17(1)~~ where h is the genus of the surface (see e.g., 
[Go]). We can consider the average of (99), for n = 2, as the representation 6 runs over 
Hom(nt (M), U( 1)). Namely 
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&A-1/2 (1 +0(*-q d”([O,). (108) 
Hom(m(W. U(l)) 

On applying Laplace method, and denoting by Homo the finite set in Hom(nt (M), U ( 1)) 
where the differential of log tE vanishes and where the corresponding Hessian is a non- 
degenerate quadratic form, we can estimate the above integral in terms of AlI2 (which is 
the power of h characterizing the subleading asymptotics in (99)) and obtain the bound 

s 
&,,(A”, k) 

Hom(nl(M). G)/G 

2(2n)h 44 h 
I X ;; 0& &Co+:2 (1 + 0(X”?), 

11 
(109) 

where a~ is the inverse of the determinant of the Hessian of log 6. 
As recalled in the introductory remarks, we define the critical exponent n(G) associated 

with the entropy function Bcov(A~, A) by means of the relation 

s Bcov(A", h) = Meas 
Hom(m WV, G) 

G > 
exp[ck]hV*“p-3, (110) 

Hom(irl CM). Cl/G 

where c is a suitable constant (depending on G). Thus, corresponding to (109) we get the 
following upper bound for the critical exponent q(G), 

n(G = U(1)) 5 2 + i(l - h). (111) 

One may wish to compare this bound with the exact critical exponent associated with 
(l), namely 

)7sup = 2 + (1 - h) 
c - 25 - ,/(25 - c)(l - c) 

12 
(112) 

It follows that (111) correctly reproduces the KPZ scaling in the case h = 1 (notice however 
that 17 = 2 is not a good testing ground since this value of the critical exponent holds for 
genus h = 1 surfaces regardless both of the presence of matter and of the fluctuations of 
the metric geometry [Dl]). The bound (111) is strict both for genus h = 0 and h > 1, and it 
remains consistent with KPZ scaling. One may suspect that it may be also consistent with 
a strong coupling of 2D-gravity with matter, namely in the regime where KPZ is believed 
not to be reliable. As a matter of fact, conformal field theory has not been used in deriving 
our entropy estimates. To discuss this point further, let us extend the above analysis to 
representations in more general groups. 

Recall that the group G is endowed with an Ad-invariant, symmetric, non-degenerate 
bilinear form. This metric induces [Go], for n = 2, a symplectic structure on 
Hom(rrt (M), G)/G, which can be used to give meaning to the integration of (99) over 
Hom(nt (M), G)/G, similarly to what was done in (108). 
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More in detail, if we denote by z(0) the centralizer of 8(nt (M)) in G, then the dimension 
of the Zariski tangent space Hi(M) to Hom(rrt (M), G)/G at 8 is given by [Go,Wal 

(2h - 2)dim(G) + 2 dim(z(0)). (113) 

Thus, again on formal application of Laplace method, we get the bound (up to the usual 

exponential factor ($)“), 

c (2=)(h-l)dim(G)+dim(z(B)) 

BeHorn 

x&c- *!& - [ (h-l)dim(G)/2-dim(z(@)/2-l/21 (1 + . . .) 
(114) 

with obvious meaning of Homo, and where . . stands for terms of the order 

0(~[-(h-l)dim(G)/2-dim(z(~))/2-3/21)~ 

The corresponding bound to the critical exponent is (for a given 0 E Homo), 

n(G) 5 2 + (1 - h)idim(G) + i(l - dim(z(0))). (118 

As for the G = U( 1) case, the structure of this critical exponent is consistent with KPZ 
scaling, and it may be a good starting point for discussing a strong coupling regime between 
matter and 2D-gravity. 

5.2. The four-dimensional case 

The four-dimensional case can be readily discussed along the same lines of the two- 
dimensional case. 

By (formally) integrating (99) over Hom(rrt (M), G)/G, and again on applying Laplace 
method, we get the asymptotics 

c (2n)-dim(G)x(M)/4+b(2)/4-1/2 

OcHomo 

a; 
XJag- 

A; (oh) 

h[dim(G)x(M)/8-b(2)/8-1/21 (1 + . . .I, (116) 

where . . . stand for terms of the order O(;C [dim(G)x(M)/8-b(2)/8-3/21). As usual, Homo de_ 

notes the finite set in Hom(rrl (M), G) where the differential of log 6 vanishes and where 
the corresponding Hessian is a non-degenerate quadratic form. Notice that in the above 
asymptotics we used (42) providing the formal dimension of the Zariski tangent space to 
Hom(nt (M), G)/G. Notice also that in the above expression we can set Ai = 1 (the 
torsion being trivial in dimension four for a closed manifold-see the remarks in Section 
3.2; the same holds in dimension two). 



C. Bartocci et al. /Journal of Geometry and Physics 18 (I 996) 247-294 191 

The bound to the critical exponent corresponding to the estimate (116) is (for a given 
6’ E Homo), 

r](G) I s + idim(G)X(M) - {b(2). (117) 

As recalled in the introductory remarks this bound is fully consistent with the (limited) 
numerical evidence at our disposal. In our opinion, a more careful treatment of the integration 
over the representation variety may considerably improve (also in the two-dimensional case) 
these bounds. We will not address these interesting questions any further here. In particular, 
one needs to understand in considerable detail the geometry of Hom(nl (M), G)/G, for 
n 2 3. For instance, the rather naive approach to integration over the representation variety 
adopted above is not suitable for the three-dimensional case. In dimension 3 the Reidemeister 
torsion is not trivial, and integration over Hom(rrl (M), G)/G is rather delicate (see e.g., 
[JW] for a remarkable analysis) and a separate study is needed for discussing the three- 
dimensional case in full detail. A look at (99) shows that the entropy estimates, for n = 3, 
have exactly the structure one would expect in this case. Indeed the integration of the 
(Ray-Singer) torsion over a moduli space of flat connections (our Horn&l(M), G)/G). is 
the basic ingredient in Witten’s approach to 3D-gravity [SC]. Details on this case will be 
presented in a forthcoming paper. 
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Note added in proof 

A simple proof of the entropy bound, and an actual entropy estimate for Dynamically 
Triangulated Manifolds in dimensions 3 and 4, is now available: M. Carfora and A. Marzuoli, 
Holonomy and entropy estimates for dynamically triangulated manifolds, in: Quantum 
Geometry and Diff-invariant Quantum Field Theory, special issue of J. Math. Phys., to 
appear in Nov. 95. 
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